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Theorem (Cauchy’s Inequalities). If f is holomorphic and [f| < M in
N(a,R) = {z: |z —a| < R} — then |f™(a)| < n!M/R".

Proof. Take v = ~y(a, R) in CIF(n). Then by ML,
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7. Cauchy-Taylor Theorem.

Theorem (Cauchy’s Form of Taylor’s Theorem: Cauchy-Taylor The-
orem). If f is holomorphic in N(a, R) (R > 0), then there exists constants
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fz)=> e(z—a)" (2 €N(aR),
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where the coefficients ¢, are given by
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(v=7(a,7),0 <7 < R).
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Proof. Choose z € N(a, R), and then r with |z — a| < r < R. By CIF,

)= 217”/75(1”)2 dz.
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On v =~(a,r), lw—a|] =r > |z —a|. So the series converges uniformly on
w. So we can interchange [, ...dw and > 5%

f(z) = ;mLf io.é T dw = i](z —a)"- ;m[y(w f_(qj))nﬂ dw.

So (i) f(2) =X en(z —a)™, (W)here
(ii)ep = 55 [ —LW)dw = 22 by CIF(n). //
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The following are equivalent:
(i) f is holomorphic (differentiable once) throughout D;
(i) f is differentiable infinitely often throughout D;
(iii) f is the sum its Taylor series throughout D (‘f is analytic’ in D).
Compare the real case (Lecture 1, f(x) = exp(—1/z?))!

Note. Property (iii) — f is analytic — is equivalent to (i) — f is holomorphic.
So terms analytic and holomorphic can be used interchangeably:.

Defn. If f(2) = X cn(z —a) and ¢g = ¢; = ... = ¢x_1 = 0, but ¢, # 0, i.e.
f(z) = cr(z—a)*[1 + cpp1(2 — a) +...], then we say that f has a zero of order
k at a. Then f(z) = (2 — a)¥g(z), g holomorphic, g(a) # 0.

Theorem. If f is holomorphic and not = 0, then the zeros of f are isolated:
each zero a has a neighbourhood containing no zeros other then itself.

Proof. 1f a is a zerof of f of order k, f(z) = (2 — a)*g(z), g holomorphic,
g(a) # 0. As g is continuous, g(-) # 0 in some neighbourhood of a. So
f(2) = (z — a)kg(2) # 0 in this neighbourhood except at a.//

Cor. 1. If f is holomorphic in D, and has zeros z, with a limit point zy € D
—then f =0.

Cor. 2 — Identity Theorem). If fi, fo are holomorphic, and fi(z,) =
fa(zn) at z, with a limit point zp € D — then f; = f5 in D.

Proof. Apply Corollary (1) on f; — fa.//

Cor. 3. A holomorphic function is uniquely determined by its values in
any arbitrarily small disc. Indeed, any infinite set with a limit point in the
domain of holomorphic will do.

Note. Recall the example in Section 2.3 Connectedness. The above results
only work because we have restricted the domains D to be connected.

Harmonic functions and holomorphic functions. Call u(x,y) harmonic in D,

u € H(D), if it has continuous 2nd-order partials, and satisfies Laplace’s
equations: Au 1= Uy, + Uy, = 0. As in I1.2, given u, we can find f holomor-
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phic (f € H(D)) and v € H(D) s.t. f=u+iv, u,v € H(D).

Recall that in I1.2, we saw that continuity of partials of u, v (and the
CR equations) was equivalent to holomorphy of f. We now know that this is
equivalent to f being infinitely differentiable, and so to u, v being infinitely
differentiable. So, for example, assuming continuity of 2nd-order partials (so
as to have ug, = u,, by Clairault’s Theorem, used in the proof that the
CR equations imply u, v harmonic) is in fact no restriction. But we needed
the definition of domains D as being connected in II.3, and the subsequent
theory above, to establish this.



