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Lecture 22. 1.3.2010.

8. Analytic Continuation.

Recall:
(i) Given f holomorphic in D, to expand f about z0 ∈ D: the resulting
expansion has R of C R, the distance from z0 to the nearest singularity of f .
(ii) Given f1, f2, equal on infinitely many points zn with limit z0 ∈ D – then
f1 ≡ f2 in D.

Note that z0 ∈ D is essential here. Eg, sin πz = 0 for z = n ∈ Z. So
sin(1/(πz)) is holomorphic in D := C\{0}, and = 0 for z = 1/(nπ) → 0 /∈ D,
the domain of holomorphy of the function. Note: sin(1/(πz)) is not ≡ 0!

Suppose now:
(i) f1 is holomorphic on a domain D1,
(ii) f2 is holomorphic on a larger domain D2 with D1 ⊂ D2,
(iii) f1 = f2 on D1.
Then we may extend the domain of definition of f1 from D1 to D2, by taking
f1(z) := f2(z) in D2 \D1. By the Identity Theorem, no ambiguity can be in-
troduced. So we lose nothing, and gain something, by extending the domain
of f1. This process, due to Weierstrass, is called analytic continuation.

1. Analytic continuation by power series.
To illustrate this process, we take the simplest possible power series – the

geometric series :
∑∞

n=0 zn = 1/(1 − z). The power series on the left-hand
side has R of C 1, so is defined for {z : |z| < 1}, the unit disc. The RHS is
defined for C \ {1} – a much bigger domain.

Take a in the unit disc, and power-series expand the function given by∑∞
0 zn about z = a:
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=

1

(1− a)− (z − a)
=

1

1− a
· 1

1− z−a
1−a

=
∞∑

0

(z − a)n

(1− a)n+1
.

This power series converges in the disc centre a touching the unit circle –
which has radius 1−|a|. But it actually converges in the larger disc, centre a
and radius |1− a|, the distance from the new base-point a to the singularity
at 1 (the RHS converges for {z : |z − a| < |1− a|}, so the R of C is |1− a|).
1. Taking a near −1 (from the right), we can cover the disc N(−1, 2) (on R,
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goes from −3 to +1).
Taking a near −3 (from the right), we can cover the disc N(−3, 4) (on

R, goes from −7 to +1).
And so on: continuing this way, we expand the domain of definition to

the half-plane x = Rez < 1.
2. Now expand about points zn = ±i n + (1 − 1/n). The R of C is the
distance from zn to 1. The union of these discs of convergence is C \ (1,∞).
3. Now expand near the x-axis (1,∞). Again, R of C = distance from this
point to 1. The union of these discs of convergence is C \ {1}.
Check: 1/(1− z) is holomorphic on C \ {1}!

We identify the function 1/(1−z), holomorphic on C\{1}, with all these
power series expansions. Similarly for the general case:

A homomorphic function is the set of all its power-series expansions.

This is the Weierstrass approach to analytic functions – via power series. We
do not need it for this example, which we can ‘sum on sight’; we do need it
in general, where we cannot.

2. Analytic continuation by integrals.
a. The Gamma function.

Γ(x) =
∫ ∞

0
e−ttx−1 dt (x > 0), Γ(z) =

∫ ∞

0
e−ttz−1 dt (Re z > 0).

Recall (Coursework 1) that from Γ(z + 1) = zΓ(z) we can continue analyti-
cally from Re z > 0 to C \ {0,−1,−2, ...,−n, ...}.
b. The Logarithm.

log z :=
∫

[1,z]

1

w
dw (log 1 = 0, e0 = 1).

This definition succeeds wherever we can join z to 1 by a straight-line segment
which does not go through the inevitable logarithmic singularity at z = 0 –
that is, except for z on the negative real axis or 0, i.e. for z ∈ C \ (−∞, 0],
the cut plane Ccut: log z is holomorphic in Ccut. This is best possible:
log(reiθ) = log r + iθ is discontinuous across the cut, so is far from being
holomorphic on the cut. For just above the cut, θ = arg z approaches π;
just below the cut, it approaches −π; there is a discontinuity of 2πi in the
logarithm across the cut. The cut is a limit to analytic continuation – a
natural boundary (Exam 2009).
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