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Lecture 23. 4.3.2010.

3. Analytic continuation by Dirichlet series.
Example: The Riemann zeta function: ζ(s) =

∑
n=1∞1/n2 (s = σ+iτ, Re s =

σ > 1). Coursework 1: extend ζ(s) analytically to Re s > 0. We quote that
(using the functional equation for the Riemann zeta function) one can hence
continue analytically to s ∈ C: ζ(s) holomorphic, except for a singularity at
s = 1, as ζ(1) =

∑
1/n diverges (harmonic series).

4. Analytic continuation by identities.
Example: The Gamma function. Recall Γ(x) :=

∫∞
0 tx−1e−t dt (Coursework

1). By Real Analysis (Problems 6, Question 3),

Γ(x)Γ(1− x) =
∫ ∞

0

vx−1

1 + v
dv (0 < x < 1)

By Complex Analysis (III.6 below),

∫ ∞

0

vx−1

1 + v
dv =

π

sin πx
(0 < x < 1).

Combining:

Γ(x)Γ(1− x) =
π

sin πx
(0 < x < 1).

As (0, 1) ⊂ C is infinite and contains limit points (all its points are limit
points!) we can continue analytically:

Γ(x)Γ(1− x) =
π

sin πx
(z ∈ C).

So RHS has no zeros (or sin would have a pole). So LHS has no zeros:

Cor. Γ(z) has no zeros for z ∈ C and has poles at Z = 0,−1,−2, ....

So 1/Γ(z) has zeros at z = 0,−1,−2... and no poles. Hence 1/Γ(z) is
entire, and

1

Γ(z)
.

1

Γ(1− z)
=

sin πz

π
.

Here 1/Γ(z) is entire with zeros at 0,−1,−2, ..., 1/Γ(1 − z) is entire with
zeros at 1, 2, ..., and sin πz/π is entire with zeros at the integers.
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9. The Maximum Modulus Theorem. See Website - not examinable.

10. Laurent’s Theorem and Singularities.
There may be points where f is not holomorphic. There, a new kind of

expansion is needed (Pierre-Alphonse LAURENT (1813-54), in 1843).

Theorem (Laurent’s Theorem). If f is holomorphic in a domain D containing
the annulus 0 < R′ ≤ |z − a| ≤ R < ∞ – then f has an expansion

f(z) =
∞∑

n=−∞
cn(z − a)n (R′ ≤ |z − a| ≤ R),

where

cn =
1

2πi

∫

γ

f(z)

(z − a)n+1
dz (n ∈ Z)

and γ is a positively oriented contour in the annulus surrounding a.

Proof. Write C, C ′ for the circles centre a radius R, R′, γ for the closed path
consisting of: (i) C anticlockwise (+ve sense); (ii) a line segment L from C to
C ′; (iii) C ′ clockwise (-ve sense); (iv) L reversed, to get back to the starting
point on C. The open annulus is the interior I(γ) of γ. By CIF,

f(z) =
1

2πi

∫

γ

f(w)

w − z
dw =

1

2πi

∫

C

f(w)

w − z
dw − 1

2πi

∫

C′

f(w)

w − z
dw

(the terms on RHS are from (i) and (iii), since those from (ii) and (iv) cancel).
On C, |w− a| = R > |z − a|, so 1/(w− z) =

∑∞
0 (z − a)n/(w− a)n+1 (as

in the Proof Cauchy-Taylor Theorem). So
∫

C

f(w)

w − z
dw =

∫

C
f(w)

∞∑

0

(z − a)n

(w − a)n+1
dw

=
∞∑

0

(z − a)n

2πi

∫

C

f(w)

(w − a)n+1
dw (by uniform convergence)

=
∞∑

0

cn(z − a)n, cn =
1

2πi

∫

C

f(w)

(w − a)n+1
dw.

Similarly, on C ′, |w−a| = R′ < |z−a|, 1/(z−w) =
∑∞

0 (w−a)n/(z−a)n+1,
so

− 1

2πi

∫

C′

f(w)

w − z
dw =

1

2πi

∫

C′

f(w)

z − w
dw =

1

2πi

∫

C′
f(w) ·

∞∑

m=0

(w − a)m

(z − a)m+1
dw.
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Interchanging
∫

and
∑

by uniform convergence as before, this gives

∞∑

m=0

(z−a)−m−1 · 1

2πi

∫

C′
f(w)(w−a)m dw =

−1∑

n=−∞
(z−a)n · 1

2πi

∫

C′

f(w)

(w − a)n+1

(writing n := −m− 1). Combining,

f(z) =
∞∑

n=∞
cn(z − a)n, cn =

1

2πi

∫

C or C ′
f(w)

(w − a)n+1
.

Here, each
∫
C or C ′ =

∫
γ Deformation Lemma). //
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