m2pm3l24.tex Lecture 24. 5.3.2010.

Example: $f(z) = \exp(-1/z^2)$, in any annulus $0 < R' \le |z| \le R \le \infty$. This is a *Laurent series* of f at 0.

Recall (Lecture 1) f is very badly behaved at 0.

Defn. In the Laurent series $\sum_{-\infty}^{\infty} c_n(z-a)^n$ above: $\sum_{0}^{\infty} c_n(z-a)^n$ (holomorphic, by Cauchy-Taylor) is called the *analytic*, or *regular*, or *holomorphic* part of f at a; $\sum_{-\infty}^{-1} c_n(z-a)^n$ is called the *singular* part.

If the singular part is a *polynomial* in 1/(z-a) of degree n, we say f has a *pole* at a of order n.

m = 1: simple pole, m = 2: double pole, etc.

When the singular part is not a polynomial – i.e., $c_n \neq 0$ for *infinitely many* negative n – then a is called an *essential singularity*. Essential singularities are points of very bad behaviour.

Examples. 1. $\sin z/z$ at 0: $\sin z/z \rightarrow 1$ $(z \rightarrow 0)$.

In such situations, if the function is *either* not defined at the point, *or* defined with a value making the function discontinuous there, then the point is a singularity. We then *remove* the singularity by defining the function to have the right value – a *removable singularity*.

2. $\sin(1/z)$ has zeros at $1/z = n\pi$, $z = 1/(n\pi)$; $1/\sin(1/z)$ has poles at $z = 1/n\pi \to 0$.

I mit of poles are also points of your had he

Limits of poles are also points of very bad behaviour, and are also called *essential singularities*.

11. Cauchy's Residue Theorem (CRT).

Defn. If f has a singularity at a, with singular part $\sum_{-\infty}^{-1} c_n(z-a)^n$, the coefficient c_{-1} of 1/(z-a) is called the *residue* of f at a, $Res_a f$.

Theorem (Cauchy's Residue Theorem, CRT). If f is holomorphic in a domain D except for finitely many singularities z_i , and γ is a contour with $\gamma \cup I(\gamma) \subset D$ – then

$$\int_{\gamma} f = 2\pi i \sum Resf,$$

where the sum is over the singularities z_i inside γ .

Proof. Surround each singularity z_i inside γ by a small circle γ_i , centre z_i , radius r_i . Let Γ be the closed path consisting of:

(i) γ , anticlockwise (+ve sense);

- (ii) a path L_i from γ to γ_i ;
- (iii) γ_i clockwise (-ve sense);

(iv) L_i reversed back to γ (one γ_i , L_i for each singularity inside γ).

As in the proof of Laurent's Theorem, $\int_{\Gamma} f = 0$ (Cauchy's Theorem). But

$$\int_{\Gamma} f = \int_{\gamma} f + \sum_{i} \int_{L_{i}} f - \sum_{i} \int_{\gamma_{i}} f - \sum_{i} \int_{L_{i}} f = \int_{\gamma} - \sum_{i} \int_{\gamma_{i}} f.$$

So

$$\int_{\gamma} f = \sum_{i} \int_{\gamma_i} f.$$

In $\int_{\gamma_i} f$, the holomorphic part gives 0, by Cauchy's Theorem. If the singular part is $\sum_{-\infty}^{-1} c_n (z - z_i)^n$ (so c_{-1} , or $c_{-1,i}$, is the residue at z_i),

$$\int_{\gamma_i} f = \int_{\gamma_i} \sum_{-\infty}^{-1} c_n (z - z_i)^n \, dz = \sum_{-\infty}^{-1} c_n \int_{\gamma_i} (z - z_i)^n \, dz$$

(interchanging \int and \sum by *uniform* convergence, as in the Proof of Laurent's Theorem).

By the Fundamental Integral (II.4, Lecture 16), the integral above is $2\pi i$ if n = -1 and 0 otherwise. So

$$\int_{\gamma} f = \sum_{i} 2\pi i c_{-1} = 2\pi i \sum_{i} Resf,$$

summed over singularities inside γ . //

Note on the Exam. This ends Ch. II: Theory. The exam will consist of: Q1. Bits and pieces (from anywhere);

Q2,3. Chapter II: Theory (Lectures 10-24);

Q4. Chapter III: Applications (Lectures 25-33) (i),(ii).