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Lecture 26. 11.3.2010.

Example. We give a further example of translation of the line of integration.

I :=
∫ ∞

−∞
u2eu

1 + e2u
du =

π3

8
,

∫ ∞

−∞
ueu

1 + e2u
du = 0.

Take f(z) := z2ez/(1 + e2z): f has a singularity where 1 + e2z = 0, e2z =
−1 = e(2n+1)iπ, zn = (n+1/2)iπ. For γ, take the rectangle with vertices ±R,
±R + iπ, with γ1 := [−R, R], γ2 := [R, R + iπ], γ3 := [R + iπ,−R + iπ],
γ4 := [−R + iπ,−R]. The only singularity of f inside γ comes from n = 0,
at z = iπ/2.

To find the residue of f at this pole, put z = iπ
2

+ζ: as eiπ/2 = i, eiπ = −1,

f(z) =
( iπ

2
+ ζ)2.i.eζ

1− e2ζ
=

−iπ2

4

(
1 + 2ζ

iπ

)2
(1 + ζ + 1

2
ζ2 + ...)

1− [1 + 2ζ + 4
2
ζ2 + ...]

=

iπ2

4

(
1− 4iζ

π
...

)
(1 + ζ...)

2ζ(1 + ζ + ...)

=
iπ2

8ζ
(1− 4iζ

4
...)(1 + ζ...)(1− ζ...).

So Resiπ/2f = coefficient of 1/η on RHS = iπ2/8.
The contributions along γ2, γ4 → 0, (R →∞) (exponentially fast).

∫

γ1

=
∫ R

−R
→

∫ ∞

−∞
u2eu

1 + e2u
du = I.

∫

γ3

=
∫ R

−R

(u + iπ)2.(−)eu

1 + e2u
du =

∫ R

−R

(u2 + 2iπu− π2)eu

1 + e2u
du

→
∫ ∞

−∞
u2eu

1 + e2u
du + 2iπ

∫ ∞

−∞
ueu

1 + e2u
du− π2

∫ ∞

−∞
eu

1 + e2u
du.

Now ∫ ∞

−∞
ueu

1 + e2u
du =

∫ ∞

−∞
u

e−u + eu
du = 0

(odd integrand between symmetrical limits), and (substituting t := eu)

∫ ∞

−∞
eu

1 + e2u
du =

∫ ∞

−∞
d(eu)

1 + e2u
=

∫ ∞

0

1

1 + t2
dt = [tan−1 t]∞0 =

π

2
.
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Combining, ∫

γ3

f = I + 2iπ.0− π2.
π

2
= I − π3

2
.

(The fact that
∫

γ3f involves the answer I motivates the choice of the vertices
±R + iπ. One can with hindsight see this in the form of f , since (eu+iπ)2 =
e2πi.e2u = e2u.)

By CRT:
∫
γ f = 2πiRes iπ/2 f :

I +(I− π3

2
) = 2πi.iπ2/8 = −π3

4
: 2I =

π3

2
− π3

4
=

π3

4
: I = π3/8.//

Finding Residues.
Simple Pole of f at α: f(z) = g(z)/(z − α), g holomorphic at α, g(α) 6= 0.
Cauchy-Taylor Theorem: g(z) =

∑∞
0 cn(z − α)n (c0 6= 0). So

f(z) =
g(z)

z − α
=

c0

z − α
+ c1 + c2(z − α) + ... :

Resαf = coefficient of 1/(z − α) on RHS = c0 = g(α). So we get the
Cover-up Rule.

Resαf = g(α) :

cover up 1/(z − α), then substitute z = α.
Multiple Poles.
(a) If z = α is a multiple pole, put z = α + ζ (ζ small), and power-series
expand in powers of ζ (as in the Example above). Resα = coefficient of 1/ζ.
(b) Derivative Rule.

If α is a pole of f of order m, f(z) = g(z)/(z−α)m (g holomorphic at α),
g(α) 6= 0. Cauchy-Taylor Theorem: g(z) =

∑∞
0 cn(z − α)n, cn = g(n)(α)/n!.

So taking n = m− 1 gives

Resαf = g(m−1)(α)/(m− 1)!

Note. In the Example above, the pole is a simple one (this is not immedi-
ately obvious, but emerges because the Laurent expansion has singular part
containing a 1/ζ term only). So we may alternatively find the residue by
using the Cover-Up Rule, with

f(z) := z2ez/(1 + e2z) = g(z)/(z − iπ/2), g(z) =
(z − iπ/2)

(1 + e2z)
.z2ez.
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Using the Cover-Up Rule, we find Resiπ/2 f = g(iπ/2). The z2ez factor is
(iπ/2)2.eiπ/2 = −iπ2/4 at iπ/2. The fraction on the right is an indeterminate
form at iπ/2, which we can evaluate by
(a) L’Hospital’s Rule (just as in Real Analysis):

(z − iπ/2)

(1 + e2z)
∼ 1

2e2z
→ −1/2 (z → iπ/2),

giving the residue as (−1/2).(−iπ2/4) = iπ2/8, as before, or
(b) power-series expansion (along the lines above): with z = iπ/2 + ζ, the
fraction is

ζ

[1− (1 + 2ζ + · · ·)] → −1/2 (z → iπ/2),

again as before.
You may wish to compare these two ways of finding the residue in this

example. If you have a preference, this may guide you more generally.
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