m2pm3l27.tex

Lecture 27. 12.3.2010.

3. Infinite Integrals.

We handle these by by a limiting operation. Example.

$$I := \int_0^\infty \frac{\cos x}{(1+x^2)^2} \, dx = \frac{\pi}{2e}.$$

We prove: $\int_{-\infty}^{\infty} \cos x \, dx/(1+x^2)^2 = 2I = \pi/e$. Take γ the union of $\gamma_1 := [-R, R]$ and γ_2 , the closed semi-circle of radius R in the upper half-plane. Take $f(z) = e^{iz}/(1+z^2)^2 = e^{iz}/((z-i)^2(z+i)^2)$ – double pole inside γ at z = +i. In the upper half-plane $y \ge 0$, $f(z) = e^{ix}e^{-y}/(1+z^2)^2$, $|f(z)| \le 1/|(+z^2)^2| = O(1/R^4)$. So by ML,

$$\left| \int_{\gamma_2} \right| = O(1/R^4) \cdot \pi R = O(1/R^3) \to 0 \qquad (R \to \infty).$$

$$\int_{\mathbb{R}^3} f \to \int_{-\infty}^{\infty} \cos x \, dx / (1 + x^2)^2 = 2I \qquad (R \to \infty)$$

(as $\int_{-\infty}^{\infty} \sin x \, dx/(1+x^2)^2 = 0$, odd integrand, symmetrical limits). By CRT: $\int_{\gamma} = 2\pi i \, Res_i f$. Near i: $z = i + \zeta$, ζ small.

$$f(z) = \frac{e^{-1}e^{i\zeta}}{[1 + (-1 + 2i\zeta + \zeta^2)]^2} = \frac{e^{-1}e^{i\zeta}}{(2i)^2\zeta^2} \cdot (1 + \frac{\zeta}{2i})^{-2} = \frac{1}{4e} \frac{1}{\zeta^2} (1 + i\zeta + \dots)(1 + i\zeta + \dots)$$
$$= -\frac{1}{4e} \frac{1}{\zeta^2} (1 + 2i\zeta + \dots) :$$
$$Res_i f = \frac{-1}{4e} \cdot 2i = -\frac{i}{2e}.$$

By CRT:

$$\int_{\gamma} f = 2\pi i \left(\frac{2i}{4e}\right) = \frac{\pi}{e}, \qquad \int_{\gamma} f = \int_{\gamma_1} f + \int_{\gamma_2} f \to 2I + 0 = 2I : \qquad 2I = \pi/e. \quad //$$

In the example above, $f(z) = e^{iz}/[(z-i)^2(z+i)^2] = g(z)/(z-i)^2$, where $g(z) := e^{iz}(z+i)^{-2}$.

By the Derivative Rule with m=2, a=i:

$$g'(z) = ie^{iz}(z+i)^{-2} + e^{iz}(-2)(z+i)^{-3},$$

$$g'(i) = \frac{ie^{-1}}{(2i)^2} - \frac{2e^{-1}}{(2i)^2} = \frac{-i}{4e} - \frac{1}{4e} = -\frac{i}{2e}.$$

Example (Problems 2 Q5 (ii)).

$$I = \int_{-\infty}^{\infty} \frac{1}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{ab(a+b)} \qquad (a, b > 0).$$
$$f(z) = \frac{1}{(z+a^2)(z^2 + b^2)} = \frac{1}{(z-ia)(z+ia)(z^2 + b^2)}$$

So there are poles inside the contour at ib and ia.

$$Res_{ia}f = \frac{1}{2ia(b^2 - a^2)}$$
, and similarly $Res_{ib}f = -\frac{1}{2ib(b^2 - a^2)}$.
$$\left| \int_{\gamma_2} f \right| = O(1/R^4).O(R) = O(1/R^3) \to 0, \qquad \int_{\gamma_1} f \to I \qquad (R \to \infty).$$
 By CRT:

$$I = 2\pi i \sum Res = \frac{2\pi i}{2i} \cdot \frac{1}{b^2 - a^2} \left(\frac{1}{a} - \frac{1}{b} \right) = \frac{\pi}{ab} \frac{(b-a)}{(b^2 - a^2)} = \frac{\pi}{ab(a+b)}.$$

What if a = b? We then have one double pole at ia inside γ . Evaluate $Res_{ia}f$ by either series expansion or derivative rule (left as an exercise).

4. Indentation. E.g.

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

Take $f(z) = e^{iz}/z$. This has a pole at the origin, which we must exclude from the semi-circular contour we would use as above by a semi-circular indentation round the origin. Take γ the union of γ_1 , the semi-circle centre 0 and radius $\epsilon > 0$ in the upper half-plane (clockwise), $\gamma_2 := [\epsilon, R]$, γ_3 the semi-circle radius R in the upper half-plane (anticlockwise) and $\gamma_4 := [-R, -\epsilon]$. By Cauchy's Theorem, $\int_{\gamma} = 0$. So for $\delta > 0$,

$$|f_{\gamma_3}| = \left| \int_0^{\pi} \frac{e^{i(R\cos\theta + iR\sin\theta)}}{Re^{i\theta}} \cdot iRe^{i\theta} d\theta \right| \le \int_0^{\pi} e^{-R\sin\theta} d\theta = \int_0^{\delta} + \int_{\delta}^{\pi-\delta} + \int_{\pi-\delta}^{\pi} e^{-R\sin\theta} d\theta = \int_0^{\delta} + \int_{\delta}^{\pi-\delta} + \int_{\pi-\delta}^{\pi} e^{i\theta} d\theta = \int_0^{\delta} + \int_{\delta}^{\pi-\delta} + \int_{\delta}^{\pi-\delta} e^{i\theta} d\theta = \int_0^{\delta} e^{i\theta} d\theta = \int_0^{\delta} + \int_0^{\delta} e^{i\theta} d\theta = \int_$$

So as $\delta > 0$ is arbitrarily small: RHS = 0. So $\int_{\gamma_3} f \to 0 \ (R \to \infty)$.

$$\int_{\gamma_1} f = \int_0^{\pi} e^{i\epsilon(\cos\theta + i\sin\theta)} \frac{i\epsilon e^{i\theta}}{\epsilon e^{i\theta}} d\theta = i \int_0^{\pi} (1 + O(\epsilon)) d\theta = i\pi + O(\epsilon) \to i\pi \quad (\epsilon \to 0).$$