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Lecture 28. 15.3.2010.
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as cos z/x is odd, sinx/x is even and the limits are symetric.
By Cauchy’s Theorem: [ f = 0. Combining:
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Note. f has a simple pole at 0, of residue 1, which would contribute 277 if
included. The —i7 above comes from going ‘half-way round, the wrong way’.
Lemma. As 6 increases from 0 to 7/2, sin /6 decreases from 1 to 2/7.

Proof: Problems 5, Q2.

Lemma (Jordan’s Lemma). If f is meromorphic (no singularities except
poles) in the upper half-plane, y = Imz > 0, and |f(z)] — 0 (|z| — o0),
uniformly for § = arg z € [0, 7], then for m > 0 and 7 the semi-circle |z| = R,
Imz >0,

/ e f(2)dz — 0 (R — o0).
Proof.
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So Ve > 0, AN s.t. if |z| > N, |f(2)| < € in upper half-plane. So by ML,
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which is arbitrary small. //



Note. We could use Jordan’s Lemma in
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(to avoid [ = fés +f57r_6 + 7 s)-
Ezxample.
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(Lecture 1: characteristic function of Cauchy density).

Proof. Take ¢ > 0. f(2) = 1/(x(1 + 2?)) (to use Jordan’s Lemma for
e’ /(m(1 + 2?))). The only singularity inside 7 is at y = i, a simple pole.
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By CRT:
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But

/sz/%f—l-/wf%/_o;M—i-O (Jordan’s Lemma).

This gives the result for ¢ > 0. For ¢t = 0, it is a arctan™! integral. For ¢ < 0:
replace t by —t. //

5. Rotation of the line of integration - Branch points.
Rotation: Use a sector as shown.
Branch points. Example: the Gamma function,



