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Cartesians v. Polars.
For addition and subtraction, cartesians are convenient: Re and Im add

and subtract nicely. For multiplication and division, polars are convenient:

z1z2 = (r1e
iθ1)(r2e

iθ2) = (r1r2)e
i(θ1+θ2),

z1

z2

=
rie

iθ1

rieiθ2
=

r1

r2

ei(θ1−θ2).

What is i?
We first meet i as a formal square root of −1: i =

√−1.
Then all expressions i× i = i2 are replaced by −1: i2 = −1.
Rotation.

In the Argand diagram, i is (0, 1) = 0 × 1 + 1 × i in Cartesians, 1 × ei π
2

in polars. As cos (π/2) = 0, sin (π/2) = 1,

iz =
(
1eiπ/2

) (
reiθ

)
= rei(θ+π/2).

So multiplying by i rotates the radius vector through a right-angle anticlock-
wise: “i is the order Left Turn” (not a number so much as an operation).
2× 2 matrices:

I =

(
1 0
0 1

)
: I2 = I.

J =

(
0 1
−1 0

)
: J2 =

(
0 1
−1 0

) (
0 1
−1 0

)
=

(
−1 0
0 −1

)
= −I.

We can if we wish regard the Argand representation as

(x, y) ←→ xI + yJ,

and work with 2× 2 real matrices.
Note The reals R form a field in the language of Algebra. This field is not it
algebraically closed: a real polynomial need not have real roots: (e.g. x2+1).
By adjoining to the field R the element i (or i and −i), we obtain a bigger
field, C, in which x2 + 1 does have roots. This passage from R to C is called
field extension. It leads to the subject of Galois theory (Evariste GALOIS
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(1811-1832), in 1832). We do not need to go further. Now all complex poly-
nomials of degree n have n complex roots (counted according to multiplicity):
this is the Fundamental Theorem of Algebra, which we shall prove later (II.6).

Despite the name, the Fundamental Theorem of Algebra is a result not of
Algebra but of Analysis. Its proof needs limiting operations. We can think
of Analysis as the subject concerning limit operations (such as convergence,
differentiation, integration etc.). But basically we are doing Analysis when
we are making essential use of the properties of the real or complex number
systems, R or C (G. H. Hardy (1877-1947) used to say that an analyst was a
mathematician habitually seen in the company of the real or complex num-
ber systems).

Theorem (Triangle Inequality).

|z1 + z2| ≤ |z1|+ |z2|.

Proof.

|z1 + z2|2 = (z1 + z2)(z1 + z2)
= (z1 + z2)(z1 + z2)
= z1z1 + z1z2 + z2z1 + z2z2

= |z1|2 + |z2|2 + 2Re(z1z2) (z2z1 = z1z2; 2Re(z) = z + z
≤ |z1|2 + |z2|2 + 2|z1||z2| (Re(z) = x ≤ √

x2 + y2 = |z|; |z1z2| = |z1||z2|)
= (|z1|+ |z2|)2. //

Cor. Equality holds, |z1 + z2| = |z1|+ |z2|, iff z1, z2 have the same argument
-i i.e. lie on the same ray arg(z) = θ.

Proof. Equality holds iff Re(z1z2) = |z1z2|. But z1z2 = r1e
iθ1 × r2e

−iθ2 =
r1r2e

i(θ1−θ2) = r1r2 = |z1z2| iff θ1 = θ2. //

Note [Geometrical Interpretation].
Sum of lengths of two sides of a triangle ≥ lengths of 3rd side. Equality iff
triangle degenerates to a line.

Note [Physical Interpretation].
Vector addition. Triangle of Forces.
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