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Lecture 30. 30.3.2010.

f has a pole at z = −1 = eiπ, of residue eiπ(a−1). By CRT:

I − Ie2πi(a−1) = 2πieiπ(a−1),

I = π.
2ieiπ(a−1)

1− e2πi(a−1)
= π.

2i

e−iπ(a−1) − eiπ(a−1)

=
π

− sin π(a− 1)
=

π

sin π(1− a)
=

π

sin πa
= Γ(a)Γ(1− a). //

Note. For 0 < x < 1, Γ(x)Γ(1−x) =
∫∞
0 vx−1dv/(1+v). Proof (Solns 6, Q3):

Γ(x)Γ(x− 1) =
∫ ∞

0
tx−1e−t dt.

∫ ∞

0
u−xe−u du.

Writing u = tv and interchanging the order of integrations, this is

∫ ∞

0
v−x dv

∫ ∞

0
e−t(1+v) dt =

∫ ∞

0

v−x

1 + v
dv =

∫ ∞

0

vx−1

1 + v
dv

(x → 1− x leaves LHS unchanged, so also RHS).
Branch Points. Recall from Lecture 11:
(i) Complex logs log z are many-valued;
(ii) hence so are complex powers zw := ew log z.
This is because the argument θ = arg z in z = reiθ is only determined to
within integer multiples of 2π. The problem arises from complete revolutions
about the origin (which we can prevent, e.g. by cutting the plane). It is this
property of the origin that makes it a branch point. The branch-point is the
point at which the different branches of the function (or, different sheets of
the Riemann surface) meet. log(z − z0), (z − z0)

w: z0 is a branch-point, etc.
Complex nth roots of unity.

For k ∈ Z, e2πik = 1. For n ∈ N, take nth root: e2πik/n = 1, k = 0 →
n− 1. These are the complex nth roots of unity. One is real, 1 (k = 0). If ω
(or ωn) is an nth root of unity, ωn = 1:

ωn − 1 = (ω − 1)(ωn−1 + ωn−2 + ... + ω + 1) = 0.

So the complex nth roots of unity other than 1 satisfy

ωn−1 + ωn−2 + ... + ω + 1 = 0.

1



The nth roots of unity lie on the unit circle, at the vertices of a regular n-gon
with one vertex 1. Draw these for n = 2, 3, 4, 5, 6.

7. Summation of Series
Consider the function cot πz = cos πz/ sin πz, with simple poles at z = n.

For z = n + ζ, ζ small,

cot πz =
cos(nπ + πζ)

sin(nπ + πζ)
=

(−1)n cos πζ

(−1)n sin πζ
∼ 1

πζ
(ζ → 0) : Resn cot πz =

1

π
.

Also, cosec πz = 1/ sin πz has simple poles at z = n, and

Resncosec πz =
(−1)n

π
.

If f(z) is holomorphic at z = n, by the Cover-Up Rule,

Resn f(z) cot πz =
f(n)

π
, Resn f(z)cosec πz =

(−1)nf(n)

π
.

This suggests a method of summing series
∑

f(z) or
∑

(−1)nf(n) by CRT.
We need suitable contours.

Lemma. Let CN be a square with vertices (N + 1
2
)(±1± i). Then cosec πz,

cot πz are uniformly bounded (in z and N) on CN .

Proof. Not examinable – see Website.

Example.
∞∑

n=1

1

n2
=

π2

6
(Euler).

Proof. Take f(z) = 1/z2. Then f(z) cot πz has simple poles at z = n 6= 0
residue f(n)/π = 1/(πn2), and a triple pole at z = 0. Near 0,

f(z) cot πz =
cos πz

z2 sin πz
=

1− π2z2

2
+ ...

z2
(
πz − π3z3

6
+ ...

)

=
1

πz3
.(1− π2z2

2
+ ...)(1 +

π2z2

6
− ...) =

1

πz3
.(1− π2z2

3
+ ...).

The residue is the coefficient of 1/z, so

Res0 f(z) cot πz = −π/3.
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