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Lecture 31. 22.3.2010.

Take f(z) = 1/2%, squares Cy as in the Lemma. By CRT:
/ C0t27TZ ds
On 2

By ML: as cot 7z is bounded (= O(1)) on the Cy, 1/2* = O(1/N?) on the
Cy, and the Cy have length O(N),
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Combining, we get

= 0(1).0(1/N*).O(N) = O(1/N) - 0 (N — 00).
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say. Since (1 —{..})7' =1+{...} +{...}? + ..., the last factor on the RHS is
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neglecting terms beyond z*. So multiplying up the last two brackets on the
RHS, we get three terms in z*, each of which will contribute to the residue

(coefficient of 1/z), in view of the 27° factor. This gives
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As before:
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8. Expansion of a meromorphic function.
Ezample.
1 1 1

f(z) =cosec z— — = — — —.
z sinz oz

Simple pole at z = nw, N # 0. For z = nw + (,

_ 1 L= 1 (=n" ,
f(z)_sin(mr—i—o_nﬂ—l—(_ sin ¢ _n7r+§N ¢ (C=0):

Resy.f = (=1)", n#0.
At n =0,
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no singularity, so no residue.

Recall (II1.7 — see Lecture 30 and Handout) that as cosec wz is bounded
on the squares Cy with vertices (N + 1)(+1 1), cosec z is bounded on the
squares I'y with vertices (N + 1)m(+1 £14). Consider

In(2) = / wf<w>)dw _ / cosecw — 3 4
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I 5{5}“ dw' = 0(1).0(1/N*).0(N) = O(1/N) =0 (N — o0)
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So In(z) — 0 as N — oo. By CRT:

dw‘ = O(1/N).O(1/N?).O(N) = O(1/N?) — 0.
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over the singularites inside I'y. For fixed z, z is inside I'y for large enough
N. By the Cover-Up rule:

cosec z —1/z cosec w — 1/w

Res, = ————, Resg = =0.
z w(w — 2)
For n # 0,
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We can cancel 27i/z. Then replace fo:_N”#O =S NV by SN+
the 1/(nm) and —1/(nm) cancel, and
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We obtain
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Similarly,
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In Lecture 32 (lost because of the end of term), we start with (i) and
(ii), integrate, and obtain the infinite products for sin, cos and tan. These
give extensions to entire functions of the Fundamental Theorem of Algebra,
displaying a polynomial as a product of linear factors vanishing at its roots.
From these, we can obtain ((2) = 72/6, ((4) = 7*/90 and Wallis’s product
for m (again).



