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Lecture 31. 22.3.2010.

Take f(z) = 1/z2, squares CN as in the Lemma. By CRT:

∣∣∣∣
∫

CN

cot πz

z2
dz

∣∣∣∣ = 2πi
∑

Res = 2πi


−π/3 +

N∑

n=−N

1

πn2


 (Cover-Up Rule).

By ML: as cot πz is bounded (= O(1)) on the CN , 1/z2 = O(1/N2) on the
CN , and the CN have length O(N),

∣∣∣∣
∫

CN

cot πz

z2
dz

∣∣∣∣ = O(1).O(1/N2).O(N) = O(1/N) → 0 (N →∞).

Combining, we get

−π

3
+

2

π

N∑

n=1

1/n2 → 0 (N →∞) : ζ(2) :=
∞∑

n=1

1/n2 = π2/6. //

Similarly,

ζ(4) =
∞∑

n=1

1/n4 = π4/90.

Proof.

cot πz

z4
=

cos πz

z4 sin πz
=

1− π2z2

2
+ π4z4

24
...

z4
(
πz − π3z3

6
+ π5z5

120
...

)

=
1

πz5

(
1− π2z2

2
+

π4z4

24
...

)
.(1− π2z2

6
+

π4z4

120
...)−1

=
1

πz5

(
1− π2z2

2
+

π4z4

24
...

)
.(1− {...})−1,

say. Since (1−{...})−1 = 1 + {...}+ {...}2 + ..., the last factor on the RHS is

1+
π2z2

6
−π4z4

120
+

π4z4

36
+... = 1+

π2z2

6
+π4z4(

1

36
− 1

120
) = 1+

π2z2

6
+π4z4 7

360
,

neglecting terms beyond z4. So multiplying up the last two brackets on the
RHS, we get three terms in z4, each of which will contribute to the residue
(coefficient of 1/z), in view of the z−5 factor. This gives

Res0
cot πz

z4
= coefficients of 1/z on RHS =

1

π
.π4

(
7

360
+

1

24
− 1

12

)
= ... = −π3

45
.
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As before:

−π3

45
+

2

π

N∑

n=1

1/π4 → 0 (N →∞) : ζ(4) =
∞∑

1

1/n4 = π4/90. //

8. Expansion of a meromorphic function.
Example.

f(z) = cosec z − 1

z
=

1

sin z
− 1

z
.

Simple pole at z = nπ, N 6= 0. For z = nπ + ζ,

f(z) =
1

sin(nπ + ζ)
− 1

nπ + ζ
=

(−1)n

sin ζ
− 1

nπ + ζ
∼ (−1)n

ζ
(ζ → 0) :

Resnπf = (−1)n, n 6= 0.

At n = 0,

f(z) =
z − sin z

z sin z
=

z −
(
z − z3

6
...

)

z
(
z − π3

6
...

) =
1
6
z3 + ...

z2
(
1− z2

6
...

) ∼ z

6
→ 0 (z → 0) :

no singularity, so no residue.
Recall (III.7 – see Lecture 30 and Handout) that as cosec πz is bounded

on the squares CN with vertices (N + 1
2
)(±1± i), cosec z is bounded on the

squares ΓN with vertices (N + 1
2
)π(±1± i). Consider

IN(z) :=
∫

ΓN

f(w)

w(w − z)
dw =

∫

ΓN

cosec w − 1
w

w(w − z)
dw.

∣∣∣∣∣
∫

ΓN

cosec w

w(w − z)
dw

∣∣∣∣∣ = O(1).O(1/N2).O(N) = O(1/N) → 0 (N →∞)

∣∣∣∣∣
∫

ΓN

1
w

w(w − z)
dw

∣∣∣∣∣ = O(1/N).O(1/N2).O(N) = O(1/N2) → 0.

So IN(z) → 0 as N →∞. By CRT:

IN(z) = 2πi
∑

Res
cosec w − 1/w

w(w − z)
,
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over the singularites inside ΓN . For fixed z, z is inside ΓN for large enough
N . By the Cover-Up rule:

Resz =
cosec z − 1/z

z
, Res0 =

cosec w − 1/w

w(w − z)
= 0.

For n 6= 0,

Resnπ =
(−1)n

nπ(nπ − z)
=

(−1)n

(−z)

(
1

nπ
− 1

nπ − z

)
= −(−1)n

z

(
1

z − nπ
+

1

nπ

)
.

So

IN(z) = 2πi



−

N∑

n=−N n 6=0

[
(−1)n

z

(
1

z − nπ
+

1

nπ

)]
+

cosec z − 1/z

z



 → 0.

We can cancel 2πi/z. Then replace
∑N

n=−N n 6=0 =
∑−1
−N +

∑N
1 by

∑N
1 {...+...}:

the 1/(nπ) and −1/(nπ) cancel, and

1

z − nπ
+

1

z + nπ
=

2z

z2 − n2π2
.

We obtain

cosec z =
1

z
+ 2z

∞∑

n=1

(−)n

z2 − n2π2
=

1

z
+ 2z

∑
even

−2z
∑

odd

. (i)

Similarly,

cot z =
1

z
+ 2z

∞∑

n=1

1

z2 − n2π2
. (ii)

In Lecture 32 (lost because of the end of term), we start with (i) and
(ii), integrate, and obtain the infinite products for sin, cos and tan. These
give extensions to entire functions of the Fundamental Theorem of Algebra,
displaying a polynomial as a product of linear factors vanishing at its roots.
From these, we can obtain ζ(2) = π2/6, ζ(4) = π4/90 and Wallis’s product
for π (again).
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