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Lecture 6. 22.1.2010.

4. Open and Closed Sets; Metric Spaces and Topological Spaces.
Recall that on R an interval I with endpoints a, b is open if it omits its

end-points, I = (a, b) = {x : a < x < b}, closed if it contains its end-points,
I = [a, b] = {x : a ≤ x ≤ b}. Similarly for rectangles in R2, cuboids in
R3, etc. In all these cases the definition means that the set is open if the
boundaries are omitted, and closed if they are included. It turns out that
being an interval, rectangle, cuboid, ... is not the point here. What matters
is the difference between openness and closedness. This is very important,
can be defined quite generally, and is the basis of General Topology.

Defn. 1. A neighbourhood (nhd) of a point x with radius r is N(x, r) := {y :
|y − x| < r}.
2. A punctured neighbourhood is N

′
(x, r) := N(x, r) \ {x} = {y : 0 <

|y − x| < r}.
3. A set S (in Rd,C,...) is open if each point x ∈ S has a neighourhood in
S: ∀x ∈ S ∃r > 0, s.t. N(x, r) ⊂ S.
4. A point x of S is a closure point of S if each neighbourhood N(x) of
x contains a point of S other then x, or, in other words, each punctured
neighbourhood N

′
(x) of x contains a point of S (“meets S”).

Example. In R, a, b are closure points of (a, b), but do not belong to it; and
they are also closure points of [a, b], and do belong to it.

In Rd, C, but not in general, x is a closure point of S ⇐⇒ every neigh-
bourhood N(x) meets S in infinitely many points of S, i.e. each punctured
neighbourhood N

′
(x) meets S in infinitely many points ⇐⇒ every neigh-

bourhood N(x) contains an infinite sequence of points in S converges to x
(i.e.,x is a limit point of S). So in M2PM3 Complex Analysis we may replace
‘closure point’ by ‘limit point’, as in the definition below.

Defn. 1. A set S is open if every point x in S has a neighbourhood N(x) ⊂ S.
2. A set S is closed if S contains all its closure points (equivalently, limit
points).

We quote (the proofs are not difficult):
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S is open ⇔ its complement Sc is closed;
S is closed ⇔ its complement Sc is open.

Defn. The closure S̄ of S is S̄ := S ∪ { closure points of S}.
We quote (the proofs are not difficult):

(i) S̄ is closed.
(ii) ¯̄S = S̄.
(iii) S closed ⇔ S = S̄.
(iv) S̄ is the smallest closed set containing S.
(v) S̄ is the intersection of all closed sets containing S.

Example. If I is (a, b), (a, b], [a, b), [a, b], then Ī = [a, b].

Defn. x ∈ S is an interior point of S if some neighbourhood N(x) ⊂ S. The
set of interior points of S is So (“o for open”), the interior of S.

The following five statements are the counterparts for open sets of the
five above for closed sets. They may be proved in a similar way, or from the
above by taking complements.
(i) So is open.
(ii) Soo = Soo.
(iii) S open ⇔ S = So.
(iv) So is the largest open subset of S.
(v) So is the union of all open subsets of S.

Example. If I is (a, b), (a, b], [a, b), [a, b], then Io = (a, b).

Defn. The boundary ∂S of S is ∂S = S̄ \ So.

Example. If I is (a, b), (a, b], [a, b), [a, b], then ∂I = {a, b}.

Defn. In C, write:

N(z0, r) = {z : |z − zo| < r} open disc, centre z0 radius r
N̄(z0, r) = {z : |z − zo| ≤ r} closed disc, centre z0 radius r
C(z0, r) = {z : |z − zo| = r} C for circle.

One can check: 1. The union of an arbitrary family of open sets is open;
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2. The intersection of a finite family of open sets is open.

Example. Note that in R, (−1/n, 1/n) is open (n = 1, 2, 3, ...), but ∪∞n=1(−1/n, 1/n) =
{0}, which is closed. So the restriction to ‘finite’ in 2 is vital.

The two statements above for open sets have ‘dual forms’ for closed sets,
which we obtain by taking complements (which interchanges open and closed)
and using De Morgan’s laws (which interchange union and intersection):
1. The intersection of an arbitrary family of closed sets is closed.
2. The union of a finite family of closed sets is closed.
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