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Note. 1. These properties of open sets form the basis of the subject of
General Topology (Felix HAUSDORFF (1868-1942) in 1914), which is about
topological spaces.
2. More general than Rd or C but less general then topological spaces are
metric spaces (Maurice FRÉCHET (1889-1973) in 1906), spaces with a dis-
tance function d = d(x, y) between points x, y which satisfy the Triangle
Inequality

d(x, y) ≤ d(x, z) + d(z, y).

Examples.
1. Euclidean space Rd (including C as R2): if x = (x1, ..., xd), y = (y1, ..., yd),

d(x, y) = ‖x− y‖ =

√√√√
d∑

i=1

|xi − yi|2

(Pythagoras’ Theorem: c. 450 BC).
2. Hilbert Space (David HILBERT (1862-1943)).

`2 := {x = (xn)∞n1
:
√∑∞

n=1 |xn|2 < ∞}. Then (Pythagoras’ Theorem again)

d(x, y) = ‖x− y‖ =

√√√√
∞∑

n=1

|xn − yn|2.

Hilbert space `2 (a sequence space – there are others, such as the function
space L2 (‘L for Lebesgue’)) can be thought of as ‘Euclidean space of infinite
dimension’. There are similarities between Hilbert and Euclidean spaces, but
also important differences, which we shall soon meet.

5. Infinite, countable and uncountable sets. Write Nn = {1, 2, ..., n}.
Defn (Galileo, Dedekind). A set S is infinite iff it can be put in 1-1 corre-
spondence with a proper subset of itself, finite otherwise.
Example. The simplest infinite set (and the first we meet) is the integers N,
which is infinite under this definition because

N ↔ N \ {1} under n ↔ n + 1.

We quote: a finite set S can be put in 1-1 correspondence with exactly
one Nn. This n is called the cardinality of S, card(S), or |S|.

1



The Pigeonhole Principle. If there are n staff pigeonholes, and a secretary
has n circulars, and has to put one in each: if she ends empty-handed, and
knows she hasn’t given anyone two, then everyone has one; if she knows she
has given everyone (at least) one, then everyone has got exactly one.

This seemingly obvious statement is Dirichlet’s Pigeonhole Principle.
Formally: if a mapping between two finite sets of the same cardinality is
surjective, it is also injective, and if injective, it is also surjective. The prin-
ciple (which may seem at first sight so obvious as to lack content) is in fact
extremely powerful. The Pigeonhole Principle can now be seen as essentially
equivalent to the Galileo-Dedekind definition of an infinite set: it holds for
finite sets, but fails for infinite sets.
Defn. If an infinite set S can be put in 1-1 correspondence with N, S is
called countable, otherwise S is called uncountable.
Examples. N,Z,Q are countable, [0, 1],R,Rd,C,Cd, `2 are uncountable.

We can think of countable infinite sets as ‘small’, and of uncountable sets
as ‘big’. Whereas sums are inherently countable (or finite), integrals – which
are limits of sums – are uncountable (in general).
Note. Sums can be regarded as special cases of integrals. In the language of
Measure Theory, we use Lebesgue measure for integrals and counting mea-
sure for sums.

Complex nth roots of unity. For k integer, e2πik = 1. For n integer, take nth
roots: e2πik/n = 1. These complex values are distinct for k = 0, 1, . . . , n− 1,
and are called the (complex) nth roots of unity. They are on the unit circle,
equally spaced at the vertices of a regular n-gon (draw a diagram to illustrate
this, for n = 2, 3, 4, 5 and 6).

If ω is an nth root of unity, it satisfies the equation ωn = 1. Now ω = 1
is one root. From the identity ωn − 1 = (ω − 1)(ωn−1 + ωn−2 + · · ·+ ω + 1),
the other n− 1 nth roots of unity satisfy

ωn−1 + ωn−2 + · · ·+ ω + 1 = 0.

If z is complex, n = 1, 2, 3, . . ., and z1/n is one nth root of z, then so
are z1/nωn, where ωn runs through the n nth roots of unity. These different
values (or branches) are the same when z = 0, which is accordingly called a
branch-point of z1/n. There are n nth roots: nth roots are non-unique. E.g.,
for n = 2 there are two square roots: even in Real Analysis, we get a sign
ambiguity when we take square roots.
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