m2pm3l8.tex

Lecture 8. 28.1.2010.

6. The Theorems of Bolzano & Weierstrass and Cantor. We quote (proofs not examinable):

Theorem (Bolzano-Weierstrass). If S is an infinite bounded set in \mathbb{R}^d (or \mathbb{C}) then S has at least one limit point.

Theorem (Cantor; Nested Sets Theorem). If K_n is a decreasing sequence of closed and bounded sets in \mathbb{R}^d or \mathbb{C} , i.e.

$$K_1 \supset K_2 \supset \ldots \supset K_n \supset \ldots$$

then their intersection $\bigcap_{n=1}^{\infty} K_n$ is non-empty.

The proofs (see the Handout) use repeated bisection.

Note that the condition that the K_n be bounded is essential here. For in \mathbf{R} , the sets $[n, \infty)$ are decreasing and bounded, but their intersection is empty. (One can think of their intersection as 'the point at $+\infty$ ', but this is not a real number, so not in \mathbf{R} . It is in the extended real line \mathbf{R}^* , which unlike the real line is 'compact', in a sense to which we now turn.)

7. Compactness. We usually write: open sets as G (G for geöffnet = open, German), closed sets as F (F for fermé = closed, French), \mathcal{G} , \mathcal{F} for the classes of open sets and of closed sets.

Defn. A collection $\{G_{\alpha}: G_{\alpha} \in \mathcal{G}, \alpha \in A\}$ $(G_{\alpha} \text{ open}, A \text{ some index set})$ is an open covering for S if $S \subset \bigcup_{\alpha \in A} G_{\alpha}$ ("the G_{α} covers S").

We quote that in \mathbf{R}^d , or \mathbf{C} , one can always reduce an (uncountably infinite) open covering to a *finite or countably infinite* subcovering (i.e., some finite or countably infinite subfamily of the G_{α} still covers S). (This is because in \mathbf{R} , each real is a limit of a sequence of rationals. One says that the rationals (which are countable) are *dense* in the reals, and that the reals, having a countable dense set, are *separable*. Similarly for \mathbf{R}^d , \mathbf{C} .)

For some sets S, one can always reduce to a *finite* subcovering. Defn. A set S is compact if any open covering of S contains a finite subcovering.

We usually write compact sets as K (K for kompakt=compact, German), K

for the class of compact sets.

We quote: in any metric space (e.g. \mathbf{R}^d or \mathbf{C}):

- (i) S compact implies S closed.
- (ii) S compact implies S bounded.

Combining: in a metric space, S compact implies S closed and bounded. The converse is harder, and needs restriction. We quote:

Theorem (Heine-Borel). In Euclidean space \mathbb{R}^d , or \mathbb{C} , S compact iff S closed and bounded.

Examples.

- 1. Hilbert space ℓ^2 : $\ell^2 := \{x = (x_n)_1^\infty : \|x\| = \sqrt{\sum_{n=1}^\infty |x_n|^2} < \infty\}$. This is a metric space, under the normal Euclidean distance. The unit ball $B_1 := \{x : \|x\| \le 1\}$ is closed and bounded. But B is not compact. For example, the unit vectors $\delta_n = (\delta_{nm})_{m=1}^\infty$ (Kronecker delta), are all $\sqrt{2}$ apart (Pythagoras' Theorem). So no subsequence can converge. This says that B is not 'sequentially compact', and (we quote) in a metric space sequential compactness is the same as compactness. So B is not compact, as B is a metric space. (So the Heine-Borel Theorem depends on Euclidean space being finite-dimensional).
- 2. The complex plane C is not compact. First Proof.

We use the Argand representation, and work in \mathbb{R}^2 . Then \mathbb{C} is not bounded (though it is closed), so \mathbb{C} is not compact, by Heine-Borel. Second Proof

We use stereographic projection and work in \mathbf{R}^3 . Then $\mathbf{C} \leftrightarrow \Sigma'$ (punctured sphere) - bounded but not closed. So \mathbf{C} is not compact, by Heine-Borel. 3. The extended complex plane \mathbf{C}^* is compact.

Proof. By stereographic projection, $\mathbf{C}^* \leftrightarrow \Sigma$, closed and bounded, so compact by Heine-Borel.

No 'second proof': \mathbb{C}^* is not Euclidean.

Theorem (Heine). If f is a continuous function on a compact set S, f is uniformly continuous on S.

Cor. (Heine). If $f : [a, b] \to \mathbf{R}$ is continuous, f is uniformly continuous on [a, b].

See Handout (not examinable).