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8. Cauchy’s General Principle of Convergence.
In Rd or C, a sequence (xn) is called Cauchy if

∀ε > 0, ∃N s.t. ∀m,n ≥ N, |xm − xn| < ε.

It is called convergent if

∀ε > 0,∃N s.t. ∀n ≥ N, |xn − x| < ε.

Convergent ⇒ Cauchy: For then, by the Triangle Inequality,

∀m,n ≥ N, |xm − xn| ≤ |xm − x|+ |x− xn| < ε + ε = 2ε.

So (xn) is Cauchy. //
The converse, Cauchy ⇒ convergent, is true in Rd (or C), but false in Q

(or Qd). E.g. The sequence of decimal approximations to
√

2, 1, 1.4, 1.414, ...
is convergent to

√
2 in R, but not convergent in Q (as

√
2 /∈ Q).

Defn. Call a metric space complete if all Cauchy sequences are convergent.

We quote: we can embed any metric space in a larger metric space, its
completion, s.t.: (i) the new space is complete; (ii) the original space is dense
in the new space (any point in the new space is a limit of a convergent se-
quence of points in the old space). The prototype of this is completing the
rationals to get the reals (Cantor, 1872). The general procedure (which came
much later, with metric spaces) is essentially no more complicated.

9. Upper and lower limits. The sequence +1,−1, +1,−1, ..., (−1)2n, (−1)2n+1, ...
is not convergent. But it contains convergent subsequences, and has ‘upper
limit +1, and lower limit −1’. Any sequence (xn) of reals has an upper and
lower limit, limsup and liminf, (possibly ±∞):

lim sup
n→∞

xn = lim
n→∞(sup

k≥n
xk), lim inf

n→∞ xn = lim
n→∞(inf

k≥n
xk).

10. O and o. We write ‘f(x) = O(g(x))’ (as x →∞, say) to mean ‘f(x)/g(x)
is bounded’, ‘f(x) = o(g(x))’ to mean ‘f(x)/g(x) → 0. Thus f = O(g) means

1



‘f is of the order of g, while f = o(g) means ‘f is of smaller order than g’.
We shall make heavy use of this very useful notation in Chapter III.

11. Power Series. Recall two convergence tests for
∑∞

0 an.

Ratio Test (D’Alembert). If |an+1/an| → ` as n →∞,
∑

an is
(i) convergent if ` < 1; (ii) divergent if ` > 1.
The test is inconclusive if ` = 1.

Root Test (Cauchy). Write ρ := lim sup(|an|1/n)
(i) If ρ < 1,

∑ |an| is convergent (
∑

an is absolutely convergent),
(ii) If ρ > 1,

∑ |an| is divergent.
The test is inconclusive if ρ = 1.

The Root Test is more general: if an > 0, an+1/an → ` ⇒ a1/n
n → ` also.

Usually we use the Ratio Test for an involving factorials n!, and use the Root
test for an involving nth powers, xn.

Defn. A power series in z ∈ C is a series of the form
∑∞

n=0 anz
n, (an ∈ C).

The series may converge for:
all z (e.g. the exponential series ez =

∑∞
0 zn/n!);

some but not all z (e.g. the geometric series 1/(1− z));
only for z = 0, to a0 (e.g.

∑∞
0 n!zn) – a trivial case, omitted.

We write ρ := lim sup |an|1/n. By the Root Test for
∑

anz
n:

If ρ|z| < 1, i.e. |z| < 1/ρ,
∑

anz
n converges (absolutely).

If ρ|z| > 1, i.e. |z| > 1/ρ,
∑

anz
n diverges.

If ρ|z| = 1, i.e. |z| = 1/ρ, the test is inconclusive.

Defn. Write R := 1/ρ = 1/lim sup |an|1/n:
∑

anz
n is absolutely convergent

for |z| < R, and divergent for |z| > R. We call R the Radius of Convergence
(R of C) of

∑
anz

n, |z| = R its Circle of Convergence.
Similarly for

∑
an(z − z0)

n, with base-point z0.

So a power series: converges (absolutely) inside its circle of convergence;
diverges outside its circle of convergence; may do either on its circle of con-
vergence.

∑
anz

n converges (absolutely and) uniformly in |z| ≤ R1, R1 < R:
A power series converges (absolutely and) uniformly in closed discs inside
the circle of convergence.
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