
M2PM3 HANDOUT: THE MAXIMUM MODULUS THEOREM

For information only – not examinable.

Theorem (Maximum Modulus Theorem: Local form). If f is holomor-
phic in N(a,R), and

|f(z)| ≤ |f(a)| ∀z ∈ N(a,R)

– then f is constant.
Proof. Fix r, 0 < r < R. By CIF,

f(a) =
1

2πi

∫

γ(a,r)

f(z) dz

z − a

=
1

2πi

∫ 2π

0

f(a + reiθ).ireiθdθ

reiθ

=
1

2πi

∫ 2π

0

f(a + reiθ)dθ.

So

|f(a)| ≤ 1
2π
|
∫

...| ≤ 1
2πi

∫ 2π

0

|f(a + reiθ)|dθ ≤ 1
2πi

∫ 2π

0

|f(a)|dθ = |f(a)|,

by hypothesis. So both inequalities are equalities:
∫ 2π

0

(|f(a)| − |f(a + reiθ)|)dθ = 0.

The integrand is continuous (as f is holomorphic), and ≥ 0 (by hypothesis). So
it is ≡ 0. So

|f(a)| − |f(a + reiθ)| ∀θ ∈ [0, 2π], r ∈ (0, R).

So |f | is constant.
If f = u + iv, |f |2 = u2 + v2 is constant, c2 say. So (applying ∂/∂x and

∂/∂y):
2uux + 2vvx = 0, 2uuy + 2vvy = 0.

Using the Cauchy-Riemann equations,

uux − vuy = 0, uuy + vux = 0.

Multiply the first by u, the second by v and add:

(u2 + v2)ux = 0, c2ux = 0.

If c = 0, f = 0, constant. If c 6= 0, ux = 0. Similarly, uy = 0. So u is constant.
Similarly, v is constant. So f = u + iv is constant. //
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Thkeorem (Maximum Modulus Theorem). If D is a bounded domain and
f is holomorphic on D and continuous on its closure D – then |f | attains its
maximum on the boundary ∂D := D \D.

Prof. D is bounded, so D is closed and bounded, so is compact (Heine-Borel
Thm.). As |f | is continuous on the compact set D, it attains its supremum M
on D, at a say.

Assume a /∈ ∂D (which will give a contradiction). Then a ∈ D, open, so
N(a,R) ⊂ D for some R > 0. So |f | attains its maximum on N(a,R) at a. By
the above Local Form, f is constant on N(a, R). So by the Identity Theorem,
f ≡ constant.

If f is non-constant, this gives the required contradiction, showing |f | attains
its maximum on the boundary ∂D. If f is constant, all points are maxima, a
trivial case. //

Theorem (Minimum Modulus Theorem). If f is holomorphic and non-
constant on a bounded domain D, then |f | attains its minimum either at a zero
of f or on the boundary.

Proof. If f has a zero in D, |f | attains its minimum there. If not, apply the
Maximum Modulus Theorem to 1/f .

Theorem (Maximum Modulus Theorem for Harmonic Functions). If
D is a bounded domain, u is harmonic in D and continuous on D, and u ≤ M
on ∂D: then u ≤ M on D. That is, u attains its maximum on the boundary ∂D.

Proof: similar to the above – omitted.

Applications.
Applications include asymptotics, in particular the Saddlepoint method (Rie-

mann, posthumous, 1892) and Method of steepest descents (P. DEBYE, 1909).
Suppose we have to estimate a line integral, of a holomorphic function f along
a curve γ in a bounded region of holomorphy D. We look for a stationary point
z0 of the integrand f = u + iv on γ. As points on γ (closed) are interior points
of D (open), u attains its maximum on the boundary. So z0 ∈ γ is not a maxi-
mum. Arguing similarly for −f , it is not a minimum, so must be a saddle-point
(see Calculus of Several Variables in Real Analysis). The level curves (contours)
u constant near z0 cut the level curves v constant orthogonally, and these are
paths of steepest descent (as with contours on an OS map). As in the Deforma-
tion Lemma, we may deform γ to such a path of steepest descent. We must refer
for further detail to a book or course on Asymptotics. Suffice it to point out
here that applications include Stirling’s formula for the factorial, or the Gamma
function:

n! ∼
√

2πe−nnn+ 1
2 (n →∞), Γ(x) ∼

√
2πe−xxx− 1

2 (x →∞)

(James STIRLING (1692-1770) in 1730).
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