
M2PM3 SOLUTIONS 1. 22.1.2010

Q1. (i) If x is a terminating decimal, x is a rational of the form n + m/10k.
If x is a recurring decimal, say

x = n.a1 . . . akb1 . . . b` . . . b1 . . . b` . . . ,

x is n.a1 . . . ak (rational, above) +y, where writing

b := b1/10 + . . . b`/10`

(rational, above), y is a geometric series with first term b/10k and common ratio
10−`. So

y = b.10−k/(1− 10−`),

rational, so x is rational.
If x is rational, x = m/n say:

(a) take off its integer part – so reducing to 0 ≤ m < n,
(b) cancel m/n down to its lowest terms.
(ii) Now find the decimal expansion of m/n by the Long Division Algorithm. Let
the remainders obtained by r1, r2, . . .. The expansion terminates if some rk = 0.
It recurs if some remainder has already occurred. As there are only n−1 different
possible non-zero remainders, the expansion must terminate (with remainder 0)
or recur (with a remainder the first repeat of one of 1, 2, . . . , n−1) after at most
n− 1 places.
(The examples 1/7, 2/7, 3/7, 4/7, 5/7, 6/7 show that all n − 1 places may be
needed.)
(iii) Similarly with 10 replaced by 2,3, ...

Q2. f(x) = exp(−1/x2).
(i)

f ′ = − 2
x3

e−1/x2
, f ′′ =

6
x5

e−1/x2 − 2
x3

.
(
− 2

x3

)
e−1/x2

.

If inductively f (n)(x) = Pn(1/x)e−1/x2
with Pn a polynomial (of degree 3n),

f (n+1)(x) = − 1
x2

P ′n(1/x)e−1/x2 − 2
x3

Pn(1/x)e−1/x2
= Pn+1(1/x)e−1/x2

,

completing the induction with Pn+1(x) = −x2P ′n(x)− 2x3Pn(x) (by induction,
Pn has degree 3n).
(ii) f(0) = 0.

f (n+1)(x)− f (n+1)(0)
x− 0

=
1
x

P(n+1)(1/x)e−1/x2 → 0 (x → 0),

as x−1P(n+1)(1/x) = yP(n+1)(y) is a polynomial in y := 1/x (→ ∞ as x → 0),
e−1/x2

= e−y2
, but exponential growth is faster than polynomial growth.

(iii) The Taylor series of f about 0 at x is
∞∑

n=0

f (n)(0)
n!

xn =
∞∑

n=0

0.xn/n! =
∑

0 = 0,

1



for all x. This = f(x) only at x = 0.
Note. In Ch. II, §7, The Cauchy-Taylor Theorem, we shall see how to avoid
such bad behaviour.

Q3. (θ, φ) represents a point uniquely, except at the North Pole θ = 0, when
any value of φ will do. For, near the North Pole, we can approximate spherical
polars on the sphere by plane polars on the tangent plane to the sphere at the
North Pole. Plane polars (r, θ) are not unique (only) at the origin: if r = 0, any
θ will do.

Another way of putting this is that pointing South is facing towards the
South Pole. This is a unique direction at any point except the poles: at the
North Pole, any direction faces South.

Q4. (i) For x = 0, fn(x) = 0 → 0. For x > 0, fn(x) ∼ 1/(nx) → 0.
(ii)

f ′n(x) =
(1 + n2x2)n− nx.2n2x

(1 + n2x2)2
=

n(1− n2x2)
(1 + n2x2)2

= 0

where x = 1/n. One can check this is a maximum. Then

sup
[0,∞)

fn(.) = fn(1/n) =
1

1 + 1
=

1
2
,

which does not tend to 0 as n →∞.
(iii) fn → 0 uniformly iff sup[0,∞) fn → 0.

Q5. Draw the unit circle C, and a regular hexagon with vertices P0, P1, . . . , P5

with polar coordinates (r, θ), r = 1, θ = 0, π/3, . . . , 5π/3. With O the origin,
triangle P1OP2 is equilateral: angle P1OP2 is π/3 as this is a sixth of 2π and
the hexagon is regular; the other two angles are equal by symmetry, so both
are also π/3 as they sum to 2π. So all sides of the triangle are equal – to 1,
as P1, P2 are on the unit circle. Let P1P2 cut the y-axis in Q. By symmetry,
P1Q = P2Q = 1/2. Let the perpendicular from P1 to the x-axis meet Ox in R.
Then ORP1Q is a rectangle (all angles right angles), so OR = P1Q = 1/2. The
right-angled triangle ORP1 has angle π/3 at O, so cos(π/3) = OR/OP1 = 1/2,
and similarly (or by Pythagoras’ Theorem) sin(π/3) =

√
3/2.
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