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Q1. ∑n

1
|zi|2

∑n

1
|wj |2 − |

∑n

1
ziwi|2 = LHS1 − LHS2,

say, where

LHS1 =
∑

i

∑
j
ziz̄iwjw̄j =

∑
k

+
∑

i<j
+

∑
j<i

,

say (writing k for i = j),

LHS2 = [
∑

i
ziwi][

∑
j
z̄jw̄j ] =

∑
i,j

=
∑

k
+

∑
i<j

+
∑

j<i
,

say (again with k for i = j). Subtracting, the first terms cancel, giving

LHS1 − LHS2 =
∑

i<j
[ziz̄iwjw̄j − ziwiz̄jw̄j ] +

∑
j<i

[ziz̄iwjw̄j − ziwiz̄jw̄j ].

The right-hand side is

RHS =
∑

i<j
[ziw̄j−zjw̄i][z̄iwj−z̄jwi] =

∑
i<j

[ziz̄iwjw̄j−ziz̄jwiw̄j−zj z̄iwjw̄i+zj z̄jwiw̄i].

The first two terms match the sum
∑

i<j above. The other two terms match
the

∑
j<i term above on interchanging i and j. //

The RHS in Lagrange’s identity is non-negative, giving LHS2 ≤ LHS1.
This gives the Cauchy-Schwarz inequality on taking square roots. //

Q2. As t = tan 1
2θ,

dt =
1
2
sec2 1

2
θ =

1
2
(1 + tan2 1

2
θ)dθ =

1
2
(1 + t2)dθ : dθ =

2dt

1 + t2
.

By the double-angle formula,

sin θ = 2 sin
1
2
θ cos

1
2
θ = 2 tan

1
2
θ/sec2 1

2
θ =

2t

1 + tan2 1
2θ

=
2t

1 + t2
.

So

cos2θ = 1−sin2θ = 1− 4t2

(1 + t2)2
=

1 + 2t2 + t4 − 4t2

(1 + t2)2
=

1− 2t2 + t4

(1 + t2)2
=

(1− t2)2

(1 + t2)2
: cos θ =

1− t2

1 + t2
.

Then
tan θ =

sin θ

cos θ
=

2t

1− t2
.

For −1 < c < 1 and

I :=
∫ π

0

dθ

1 + c cos θ
,

1



use the t-substitution. The limits 0 and π for θ correspond to 0 and ∞ for
t. Substituting for dθ and cos θ as above and multiplying top and bottom by
(1 + t2) gives

I = 2
∫ ∞

0

dt

(1 + c) + (1− c)t2
.

Substituting x = t
√

(1− c)/(1 + c) gives

I =
2

1 + c

∫ ∞

0

dx
√

1+c
1−c

1 + x2
,

or

I =
2√

1 + c
√

1− c

∫ ∞

0

dx

1 + x2
=

2√
1− c2

.[tan−1x]∞0 =
2√

1− c2
.
π

2
:

I = π/
√

1− c2. //

Q3. The LHS is

exp{1
2
zt}. exp{1

2
z(−)t−1} =

∑∞
i=0

ziti

2i.i!
.
∑∞

j=0

zj(−)jt−j

2j .j!
=

∑∞
i,j=0

zi+j(−)jti−j

2i+j .i!j!
.

In the double sum on RHS, we put n := i− j; then i = n+ j and i+ j = n+2j.
The limits on the summation are now n unrestricted and j non-negative as
before. This gives the RHS as

∑
−∞<n<∞,0≤j<∞

zn+2j(−)jtn

2n+2j .j!(n + j)!
.

Summing first on j on the RHS gives formally as

tn
∑∞

j=0

(−)j( 1
2z)n+2j

j!(n + j)!
= tnJn(z).

Summing then on n gives the result formally. All the rearrangements of infi-
nite series here are justified by absolute convergence. We are dealing here with
power series; recall that
(i) absolutely convergent series may be rearranged in any order;
(ii) power series are absolutely and uniformly convergent on any closed set inside
their circle of convergence. Given any non-zero t, choose ε > 0, M < ∞ with
ε ≤ |t| ≤ M ; all the operations above are justified on this set. //
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