
M2PM3 SOLUTIONS 8, 25.3.2010

Q1.

In =
∫

sinnx dx = −
∫

sinn−1x d cos x = −sinn−1x cos x+
∫

cosx.(n−1)sinn−2x cos x dx

= −sinn−1x cosx + (n− 1)
∫

sinn−2x(1− cos2x) dx :

nIn = −sinn−1x cos x + (n− 1)In−2.

Passing to the definite integral Jn :=
∫ π/2

0
sinnx dx gives

Jn =
n− 1

n
.Jn−2.

So as
∫ π/2

0
dx = π/2,

∫ π/2

0
sin x dx = [− cos x]π/2

0 = 1,
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.
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. . . . .
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2
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.
2m− 2
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. . . . .
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3
.

Dividing,
π

2
=

2
1
.
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3
.
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. . . . .
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.

2m

2m + 1
.

J2m
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But as 0 ≤ sin x ≤ 1 in [0, π/2], sin2m+1x ≤ sin2mx ≤ sin2m−1x; integrating
gives J2m=1 ≤ J2m ≤ J2m−1. So

1 ≤ J2m

J2m−1
≤ J2m−1

J2m+1
= 1 +

1
2m

↓ 1 :
J2m

J2m+1
→ 1 (m →∞).

So
π

2
= lim

m→∞
2
1
.
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.
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.
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. . . . .

2m

2m− 1
.

2m

2m + 1
.

As 2m/(2m + 1) → 1, this gives

22

32
.
42

52
. . . . .

(2m− 2)2

(2m− 1)2
→ π

2
.

Take square roots and multiply top and bottom by 2.4. . . . .(2m − 2).2m.
√

2m.
In the numerator 22.42. . . . .(2m− 2)2(2m)2 = 22m(m!)2, giving

22m(m!)2

(2m)!
√

m
→ √

π :
(

2m

m

)
.

1
22m

∼ 1√
mπ

(m →∞).

Note. See III.10 for a proof by Complex Analysis. This method is nearer to
Wallis’ in 1656 (see Dramatis Personae): Wallis evaluated

∫ 1

0
(1− x2)ndx – pre-

calculus (Newton’ Principia appeared in 1687, and was influenced by Wallis).
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Q2. Putting z = eiθ as in III.1, cos θ = (z + z−1)/2, dθ = dz/(iz), so with γ
the unit circle,

In =
∫ 2π

0

cos2nθ dθ =
∫

γ

1
22n

(z + 1/z)2n dz

iz
= − i

2π

∫

γ

2n∑

k=0

(
2n

k

)
zk.zk−2n.dz/z

= − i

2π

∫

γ

2n∑

k=0

(
2n

k

)
z2k−2n.dz/z.

By the Fundamental Integral (or directly now, by CRT), only the k = n term
on the RHS contributes;

∫
gdz/z = 2πi, whence the result.

The reduction formula is proved by the same method as in Q1.

Q3. Put f(z) = (π cot πz)/(1 + z + z2). Since z3 − 1 = (z − 1)(z2 + z + 1),
the roots of z2 + z + 1 are e2πi/3 = −1/2 + i

√
3/2 and e4πi/3 = −1/2− i

√
3/2,

the complex cube roots of unity other than 1. Integrating f round the square
contour Γn with vertices (n + 1/2)(±1± i) gives

∫

Γn

f = 2πi
( n∑

k=−n

1
1 + k + k2

+ Rese2πi/3f + Rese4πi/3f
)
.

∫

Γn

f = O(1/n2).O(n) = O(1/n) → 0 (n →∞) (by ML).

Combining,
∞∑

n=−∞

1
1 + n + n2

= −
(
Rese2πi/3 + Rese4πi/3

) π cot πz

(z − e2πi/3)(z − e4πi/3)
.

By the Cover-Up Rule, the RHS is

−π cot(πe2πi/3)
i
√

3
+

π cot(πe4πi/3)
i
√

3
=

iπ√
3
[(cot(−π

2
+

iπ
√

3
2

)− cot(−π

2
− iπ

√
3

2
)].

Since tan(a + π/2) = − cot a, cot(a− π/2) = − tan a, the RHS is

iπ√
3
[tan(− iπ

√
3

2
)− tan(

iπ
√

3
2

)] =
2iπ√

3
tan(− iπ

√
3

2
).

As i tan iθ = tanh θ, this is (2iπ/
√

3).(−i). tanh(π
√

3/2). So
∞∑

n=−∞

1
1 + n + n2

=
2π√

3
tanh(π

√
3/2).

Q4. For m > 0, put u := mx. Since dx/x = du/u, this reduces the problem to
the case m = 1, which gives I = π/2 (Lectures). For m < 0, we get I = −π/2,
since the integrand is odd in m. For m = 0, we get 0 since the integrand is 0.
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