m2pm3cw1soln(11).tex

M2PM3 COMPLEX ANALYSIS: SOLUTIONS TO ASSESSED COURSEWORK 1, 2011

Th 10 Feb 2011

Q1. (i) As $\cos n\theta = T_n(\cos \theta)$, $|T_n(\cos \theta)| = |\cos n\theta| \le 1$. So as $-1 \le \cos \theta \le 1$, $|T_n(x)| \le 1$ for $x \in [-1, 1]$: the bounds of $|T_n|$ on [-1, 1] are -1 and +1 [1]. (ii) As T_n is a polynomial, so continuous, T_n is bounded (meaning $|T_n|$ is bounded) on compact sets in the z-plane, by Heine's Theorem. So T_n is bounded on closed bounded sets in the z-plane, by the Heine-Borel Theorem. Since any bounded set has bounded closure, on which T_n is bounded (as above), T_n is bounded on any bounded set in the plane.

On the other hand, as T_n is a polynomial of degree n (with leading coefficient 2^{n-1}), for |z| large enough $T_n(z)$ is dominated by its leading term $(2^{n-1}z^n)$, which tends to ∞ in modulus as $|z| \to \infty$. Since we can let $z \to \infty$ through any unbounded set, T_n is unbounded on any unbounded set.

Combining: the sets in the plane on which T_n is bounded are exactly the bounded sets [4].

Q2 [5]. For k = 0, $e^{2\pi i k/n} = 1$, so the order is 1. For the rest, k = 1, 2, ..., n-1, giving the complex *n*th roots of unity. Here the order of the *n*th roots of unity depends on the prime power factorisation of *n*. If *n* is a prime *p*, all complex *n*th roots of unity have order *p*. If *n* is composite, k = 1 gives a root of order *n*, and so does any *k* coprime to *n* (i.e., *k* and *n* have no common factors), but if *k* is a divisor of *n*, k = n/m say, then k/n = 1/m, giving a complex *m*th root of unity, with order *m*.

[In algebraic language, the *n*th roots of unity form a multiplicative group isomorphic to the additive group \mathbf{Z}_n of integers modulo *n*. This is a cyclic group, and the above describes the subgroup structure of a cyclic group, as in Algebra or Group Theory.]

Q3. (i) The coefficients a_n are 1 along the sequence of powers of 2, 0 otherwise. So $\limsup |a_n|^{1/n} = 1$, and the radius of convergence is 1 [1].

(ii) $a_m = 0$ unless $m = 2^n$, when $a_m = 1/n!$ The radius of convergence is $R = 1/\limsup |a_m|^{1/m}$. So $1/R = \limsup (n!)^{1/m}$. By Stirling's formula,

 $n! \sim \sqrt{2\pi}e^{-n}n^{n+1/2}$. As $m = 2^n$, $n = (\log m)/(\log 2)$ (so $\log m = \log \log m - \log \log 2$). So

$$(n^n)^{1/m} = (\exp(n\log n))^{1/m} = \exp(\frac{n\log n}{m})$$
$$= \exp(\frac{((\log m)/(\log 2))(\log\log m - \log\log 2)}{m}) \to 1 \quad (m \to \infty)$$

as $m \to \infty$ faster than $(\log m)(\log \log m)$. Similarly, $(e^{-n})^{1/m} \to 1$, etc. Combining, $(n!)^{1/m} \to 1$. So R = 1 [2].

(iii) The same argument shows that here R = 1 also [1].

Q4. (i) (a) Since
$$1/(1+z) = 1 - z + z^2 - z^3 \dots$$
,

$$\frac{z}{e^z - 1} = \frac{z}{z + z^2/2 + z^3/6 + \dots} = 1/(1 + [z/2 + z^2/6 + \dots])$$

$$= 1 - [\dots] + [\dots]^2 \dots = 1 - z/2 - z^2/6 \dots + z^2/4 \dots = 1 - z/2 + z^2/12 \dots$$

$$\frac{z}{e^z - 1} = 1 - z/2 + z^2/12 \dots$$
[1]

(The expansion coefficients here are essentially the *Bernoulli numbers*, important in Analytic Number Theory, Combinatorics and elsewhere.)

(b) The power series expansion converges where the denominator $e^z - 1$ is wellbehaved (non-zero), i.e. except where $e^z = 1 = e^{2\pi i n}$, $z = 2\pi i n$ with n integer. (The only kind of bad behaviour – singularity – possible for such a well-behaved function is a zero in the denominator, as here.) The singularity (simple zero in the denominator) is cancelled by the z in the numerator at z = 0, i.e. for n = 0, but not elsewhere. So the nearest singularity to the origin is $z = \pm 2\pi i$ (where we shall see in Ch. II that the function has a simple pole of residue $\pm 2\pi i$). The distance from the origin to either singularity is 2π , so:

the radius of convergence of the power series is 2π [1].

(We know that the power series converges inside a circle centre the origin. The radius R of this circle can be at most $|z_0|$, the distance to the nearest singularity z_0 to the origin – if it were more, z_0 would be inside the circle of convergence, the power series would converge there, and it would not be a singularity. In fact, as assumed in the Sixth Form, and as we shall prove in Ch. II, $R = |z_0|$. You were not asked to prove this, so you may quote it here.) (ii) (a)

$$\frac{1}{\cos z} = \frac{1}{(1 - z^2/2 + z^4/4! \dots)} = \frac{1}{(1 - [z^2/2 - z^4/4! \dots])} = \frac{1 + [\dots] + [\dots]^2 \dots}{1 + [\dots]^2 \dots}$$

$$\frac{1}{\cos z} = \frac{1 + z^2}{2} + \dots \quad \text{(the z term is 0)}.$$
[1]

(b) The singularities are where $\cos z = 0$, i.e. where $z = (n + \frac{1}{2})i\pi$. The nearest to the origin are n = 0 or -1, at $\pm i\pi/2$, distance $\pi/2$ from 0. So the radius of convergence is $\pi/2$.

(iii) $chz := \frac{1}{2}(e^{z} + e^{-z})$, and $\cos z := \frac{1}{2}(e^{iz} + e^{-iz})$. So $chz = \cos(z/i) = \cos(-iz) = \cos iz$. So by (ii):

(a) the first three terms of the power-series expansion are $chz = 1 - z^2/2...$ (the z term is 0) [1];

(b) the radius of convergence is $\pi/2$ [1].

NHB