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Q1 [4] (Chain Rule). If g : D1 — Dy and f : Dy — C with f, g holomorphic and
D1, Dy domains, show thatf(g) : D1 — C is holomorphic, and its derivative is

(f(g) = (99"

Q2 [5]. If f: K — C with K compact is continuous, we know f is bounded
on K, by Heine’s Theorem. Show that f attains its bound on K: there exists
z0 € K with |f(20)| = sup{|f(z)] : z € K}.

Q3 [4]. If f(z) = Y0 panz", g(z) = Yo" obyz™ have radii of convergence

n=0

Ri1, Ry, and f(2)g(z) = > o ycnz™ for |2| < R :=min(Ry, Ry), find ¢,.

Q4[2. mQ3,if R>1, A:=>" an, B:=> " by, C:= > " cp, show
that C = AB.

Q5 [5]. By integrating by parts, or otherwise, show that if I,, := [ sin"z dz,
nl, = —sin" 'z cos = + (n—1)1,_s.
Deduce that if J,, := foﬂ/z sin”x dx, one has the reduction formula
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Hence show that
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Show that Jot1 < Jou, < Jom—1, and hence that
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Deduce that
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