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Q1 (Chain Rule). For h — 0, g(z + h) = g(2) + hg'(2) + o(h). So

flg(z+ 1) = f(g(2)) = f(g(2) + hg'(2) +o(h)) — f(g(2))
= f'(9(2))-(hg'(2) + o(h)) + o(hg'(z) + o(h))
= f'(9(2))g'(2)h + o(h).
This says that (f(g))" exists at z and is f'(g(z)).¢'(z), as required. [4]

Note. 1. One can write this out at greater length using €, but the above is just
as rigorous, shorter and clearer.
2. No need for any division (e.g., by g(z+h)—g(2), or ¢’(z) — these may be zero!).

Q2. If M :=sup{|f(z)|: z € K}, there exist z, € K with |f(z,)] = M. As K
is compact, the sequence z, has a convergent subsequence, z, ) say. For:

(i) K is compact, so closed and bounded by the Heine-Borel Theorem, so
any infinite set of points in K has a convergent subsequence, by the Bolzano-
Weierstrass Theorem, or

(ii) In a metric space, compactness is the same as sequential compactness, which
means that any infinite sequence contains a convergent subsequence.

Write zg for the limit of z,(x) as k — co. Then 29 € K, as K is compact, so
closed (by Heine-Borel — or, a compact subset of a Hausdorff space — in partic-
ular, of a metric space — is closed). As |f(z,)| = M, |f(zn(k))| — M. As fis
continuous and z,x) — 20, f(Znk)) = f(20), 50 |f(2n@))| = |f(20)]. Combin-
ing, |f(z0)| = M and 2 € K. [5]

Q3. For |z| < R, i.e. inside both circles of convergence,

z) = (Z ajzj)(z cp2®) = ZZajbkzj"'k.
§=0 k=0

Both power series converge absolutely inside their circles of convergence, so by
absolute convergence we may write n:= j+k (n =0,1,...) and re-arrange the

RHS, to get
z) = Zz" Z a;c.

n=0 Jjt+k=n

ZbckuajanZan kbk [4

j+k=n

So

[The sequence ¢ = (¢y,) is called the convolution of (a,) and (b,).]



Q4. If R > 1, we may put z =1 in Q3 to get f(1)g(1) = (30" am)(>g bn) =
AB on the left, and C = >~ ¢,, on the right. So AB = C. (2]
Note. In fact AB = C is still true if only one of A, B absolutely convergent.
This is Mertens’ Theorem, which we quote.]

Q5 [5).

I, = /sin"x dzx = —/sin"_lx dcosz = —sin" 'z cos ac—i—/ cos z.(n—1)sin™ %z cos = dx

= —sin" !z cosz + (n — 1)/sin"_2:1:(1 — cos’z) dx -

nl, = —sin" txcosx + (n — 1)1, _». 1]
Passing to the definite integral J,, := Oﬂ/ ’sin"z d gives
—1
Jn= L . 1]
n
So as fow/z dr = /2, fow/2 sinz do = [~ cosz|}/? = 1,
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But as 0 < sinz < 1 in [0,7/2], sin®" "z < sin®™z < sin?™ " 'z; integrating
gives Jomt1 < Jop < Jom—1. So
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Take square roots and multiply top and bottom by 2.4..... (2m —2) =
2m=L(m — 1)

24..... (2m 2) 22<m Dm —1)!? \/?

\/ V2 =

35.....(2m \/ 1)! D
Multiplying top and bottom by (2m)?,

zzmmﬂ.\ﬁ \/; 9—2m @T)x/% - \/Z: 9= 2m <2:;> ~ \/:'Tﬂ y (m — o0).

Note. 1. This is Wallis’ product for ; see I11.9 for a proof by Complex Analysis.
2. The last part is most easily checked by using Stirling’s formula. NHB




