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Q1 (Chain Rule). For h → 0, g(z + h) = g(z) + hg′(z) + o(h). So

f(g(z + h))− f(g(z)) = f(g(z) + hg′(z) + o(h))− f(g(z))

= f ′(g(z)).(hg′(z) + o(h)) + o(hg′(z) + o(h))

= f ′(g(z))g′(z)h+ o(h).

This says that (f(g))′ exists at z and is f ′(g(z)).g′(z), as required. [4]
Note. 1. One can write this out at greater length using ϵ, but the above is just
as rigorous, shorter and clearer.
2. No need for any division (e.g., by g(z+h)−g(z), or g′(z) – these may be zero!).

Q2. If M := sup{|f(z)| : z ∈ K}, there exist zn ∈ K with |f(zn)| → M . As K
is compact, the sequence zn has a convergent subsequence, zn(k) say. For:
(i) K is compact, so closed and bounded by the Heine-Borel Theorem, so
any infinite set of points in K has a convergent subsequence, by the Bolzano-
Weierstrass Theorem, or
(ii) In a metric space, compactness is the same as sequential compactness, which
means that any infinite sequence contains a convergent subsequence.

Write z0 for the limit of zn(k) as k → ∞. Then z0 ∈ K, as K is compact, so
closed (by Heine-Borel – or, a compact subset of a Hausdorff space – in partic-
ular, of a metric space – is closed). As |f(zn)| → M , |f(zn(k))| → M . As f is
continuous and zn(k) → z0, f(zn(k)) → f(z0), so |f(zn(k))| → |f(z0)|. Combin-
ing, |f(z0)| = M and z0 ∈ K. [5]

Q3. For |z| < R, i.e. inside both circles of convergence,

f(z)g(z) = (
∞∑
j=0

ajz
j)(

∞∑
k=0

ckz
k) =

∑∑
ajbkz

j+k.

Both power series converge absolutely inside their circles of convergence, so by
absolute convergence we may write n := j + k (n = 0, 1, . . .) and re-arrange the
RHS, to get

f(z)g(z) =
∞∑

n=0

zn
∑

j+k=n

ajck.

So

cn =
∑

j+k=n

bjck =
n∑

j=0

ajbn−j =
n∑

k=0

an−kbk. [4]

[The sequence c = (cn) is called the convolution of (an) and (bn).]
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Q4. If R > 1, we may put z = 1 in Q3 to get f(1)g(1) = (
∑∞

0 am)(
∑∞

0 bn) =
AB on the left, and C =

∑∞
0 cn on the right. So AB = C. [2]

Note. In fact AB = C is still true if only one of A, B absolutely convergent.
This is Mertens’ Theorem, which we quote.]

Q5 [5].

In =

∫
sinnx dx = −

∫
sinn−1x d cosx = −sinn−1x cosx+

∫
cosx.(n−1)sinn−2x cosx dx

= −sinn−1x cosx+ (n− 1)

∫
sinn−2x(1− cos2x) dx :

nIn = −sinn−1x cosx+ (n− 1)In−2. [1]

Passing to the definite integral Jn :=
∫ π/2

0
sinnx dx gives

Jn =
n− 1

n
.Jn−2. [1]

So as
∫ π/2

0
dx = π/2,

∫ π/2

0
sinx dx = [− cosx]

π/2
0 = 1,

J2m =
2m− 1

2m
.
2m− 3

2m− 2
. . . . .

1

2
.
π

2
, J2m+1 =

2m

2m+ 1
.
2m− 2

2m− 1
. . . . .

2

3
. [1]

Dividing,
π

2
=

2

1
.
2

3
.
4

3
.
4

5
. . . . .

2m

2m− 1
.

2m

2m+ 1
.
J2m

J2m+1
.

But as 0 ≤ sinx ≤ 1 in [0, π/2], sin2m+1x ≤ sin2mx ≤ sin2m−1x; integrating
gives J2m+1 ≤ J2m ≤ J2m−1. So

1 ≤ J2m
J2m+1

≤ J2m−1

J2m+1
= 1+

1

2m
↓ 1 :

J2m
J2m+1

→ 1 :
J2m+1

J2m
→ 1 (m → ∞).

So

π

2
= lim

m→∞

2

1
.
2

3
.
4

3
.
4

5
. . . . .

2m

2m− 1
.

2m

2m+ 1
:

22.42. . . . .(2m− 2)2

32.52. . . . .(2m− 1)2
.2m → π

2
.

[1]
Take square roots and multiply top and bottom by 2.4. . . . .(2m− 2) =
2m−1(m− 1)!:

2.4. . . . .(2m− 2)

3.5. . . . .(2m− 1)
.
√
2m →

√
π

2
:

22(m−1)(m− 1)!2

(2m− 1)!

√
2m →

√
π

2
.

Multiplying top and bottom by (2m)2,

22mm!2

(2m)!
.

√
2m

2m
→

√
π

2
: 2−2m

(
2m

m

)√
2m →

√
2

π
: 2−2m

(
2m

m

)
∼ 1√

mπ
(m → ∞).

[1]
Note. 1. This is Wallis’ product for π; see III.9 for a proof by Complex Analysis.
2. The last part is most easily checked by using Stirling’s formula. NHB

2


