M2PM3 EXAMINATION SOLUTIONS 2009

QL. (i)

(a). |z] =25 z= 2(3 + z?) = 2(cos ‘7r/3 +isin w/3): z = 2e7/3, [1]

(b) 25 = 2%e%7/3 = 32¢57/3 or 32¢~""/3 (polar); [1]
2 =323 - i¥3) = 16(1 — iv/3) (cartesian). 1]

(c) 271 = ge~"/ (polar); [1]

1 . +1Z\/§ — 11_5\:? = % - z? (cartesian). ()

(ii) The singularities of 1/(1 + cosh z) are the zeros of 1 + cosh z, the points
where

1
cosh z = §(€2+67Z) =-1, e?* +2¢* +1=0, (e +1)% =0,

e = —1 = nthim z= (2n+ 1)in. ([4])

)

Near such a point, take z = (2n + 1)im + ¢, ¢ small.
1 . . 1
1+cosh z=1+ 5(6(2"""1)”@( + e—(2n+1)z¢re—C) —1_ 5(64 + e—{).

Expanding the two exponential series, the constant terms go (they must, at a
zero), and the ¢ terms, leaving

1+cosh z= —%CQ +0(¢?).

So 1+ cosh z has a double zero at (2n + 1)im, so 1/(1 + cosh z) has a double

pole there. (This also follows from f(z) = e*/(1 + €*)2.) [4]
(iii) f(2) = g(2)/(z — a)*, where g is holomorphic and g(a) # 0. [3]
So
pro 20 —gk(z—a)"" _ (2—a)g — kg
(z —a)?k (z — a)kt1

The numerator is —kg(a) # 0 at z = a. So f’ has a pole at a of order k + 1, as
required. [4]

Alternatively, the Laurent expansion of f at a has the form

f(2)=c_p(z—a)*+ Z en(z—a)”, c_ # 0.
n=—k+1

We can differentiate this power series term by term, giving

fl(z) = —ke_p(z—a) F 1+ Z nen(z —a)"
n=—k+1

which shows that f’ has a pole of order k + 1 at a.



Q2. (i) D is a star-domain with star-centre zg € D if for each z € D the line-
egment [zg, 2] C D. [2]
(ii) Proof of the Theorem of the Primitive. Take any z; € D. We prove that
F'(z1) exists and is f(z1). As D is open and z; € D, some neighbourhood
N(z1,e1) C D. For |h| < €1, 21 + h € N(21,€61) C D. So as 29,21 + h € D, the
line-segment [zo, 21 + h] C D (D star-shaped with star-centre zg). Let v be the
triangle with vertices zg, 21, 21 + h, A be the union of v and its interior. Then
as D is star-shaped, A C D. [3]
By Cauchy’s Theorem for Triangles,

/f=0, Le. / f+/ f+/ f=0.
ol [z0,21] [z1,21+h] [z14+h,20]

The first term is F'(z1); the third term is —F'(z; + h). So

) . Flai+h)-Fzn) 1
F(Zl) + /[thri-h] f F(Zl + h) =0: h T h /[zl,z1+}(L][J;-)
3

As f is continuous (it is holomorphic!), Ve > 0 3§ > 0 s.t. |z — z1| < § implies
|f(z) — f(z1)] < e. For z on the line-segment [z1,21 + h|, |h] < § implies
|z — 21| < 8,50 |f(2) — f(z1)] <€ Soby (ML),

1 ORSCYPNIS W
|h/[21mh] Fedz] < W.\hl . (13))
Now I B F 1
it h) = Flz) gy L (f(2) = f(z1))dz.
h h [z1,21+h]

By above, the RHS has modulus < €. So the LHS has modulus < €, which says
that F’(z1) exists and is f(z1), as required. [3]
(iii) (a) D is the complex plane with a cut along the negative real axis. For, the
formula fails to give a convergent integral for z = 0, as the real integral fol dx/x
diverges. So 0 and all points on the far side of 1 from it, i.e. the negative real
axis, are not in D. But any point z not in D can be joined to 1 by a line-segment
avoiding the singularity at 0; on [1, z] the integrand 1/w is continuous, so the
integral f[l,z dw/w is convergent. [3]
(b) 1(2) = f'(9(2))g'(2) (chain rule) = ¢'(2)/g(2) (f'(z) = 1/, by the Theo-
rem of the Primitive) = g(z)/g(z) = 1 (¢’ = g for the exponential function g).
So h/(z) =1, h(z) = z as required. [3]
(Interpretation: f is the inverse function of the exponential function g, i.e. the
logarithm. The cut serves to make the logarithm single-valued.)

Note. If f is holomorphic in a neighbourhood of some point z, then f is differ-
entiable in some disc containing z, and discs are star-shaped. So the Theorem
of the Primitive will always apply locally — if we keep the domain small enough.
The danger is that if the domain becomes too big, the primitive ceases to be
single-valued (and so no longer counts as a function) — as with the logarithm in
this case, if the cut is omitted.



Q3. Cauchy-Taylor Theorem. If f is holomorphic in N(a, R), then

f()=3) ealz—a)" (2 € N(a,R), ([2])
n=0
where for r € (0, R) and ~ the circle with centre a and radius 7,

en=fM(a)/n! = 1 / (Zﬂ(f){wdz. (12])

21

Proof. Choose z € N(a,R), and then choose r with |z — a] < r < R; take
v = v(a,r). By the Cauchy Integral Formula,

1) = 5 [ 2% aw. (12)
Now
w—z= (wfa)<1 - Z:‘;) : wl_z =3 G -a)/(w-a) (4))
n=0

Substitute and use uniformly convergent on compact subsets of N(a, R) to in-
terchange integration and summation:

o0

z) = z—a"L Lw)w
ra =3 ar g |
So
z) = OOc z—a)" where c :L 7f(w) w= " (a)/n
F =D encarswhere =g [ o T = S,

([4])

by the Cauchy integral formula for the nth derivative, CTF(n), as required.

Take f(z) = (14 z)®. The complex power z% = exp(alog z) has a branch-
point at 0 (as the logarithm does). So (1 + z)* has a branch-point at —1.
So the largest disc centre 0 in which it is holomorphic is D = {z : |z| < 1}.
f'(2) =a(l42)*1 f(2) =ala —1)(1+2)272, ... () =ala—1)...(a—
n+1)(1+2)*" So f™(0)/n! = ala—1)...(a —n+1)/n! = (¢). By the
Cauchy-Taylor theorem,

a - a n

e =3 (D)o i<t (14)
n=0

(Newton’s General Binomial Theorem). The ratio of consecutive terms on the

right is

ala—1)...(a—n)z"" ala—1)...(a—n+1)2"

= (a—n)z/(n+1) — —2 (n — o).

(n+1)! n!
By the Ratio Test, this converges where | — z| < 1, i.e. where |z| < 1, showing
directly that the power series on the right has radius of convergence 1. 2]



Q4. (i) f(2) := sin z/(2%+1) is holomorphic except at the roots of z22+1 = 0,

i.e. z = %i. These are both inside . 2]
By the Cover-Up Rule, as f(z) =sin z/(z —i)(z + 1),
Res; f = sin i/(2i), Res_;f =sin—i/(—2i) = Res;f. (12])

But by Euler’s formula sin z = (e¥* — e~%)/2i, so sin i = (e7! —¢)/2i =
ile —e1)/2, > Resf = 2sin i/(2i) = (e —e™1)/2. [2]
So by Cauchy’s Residue Theorem,

/f:zm'ZResfzzm.(e—efl)/Qzm‘(e—efl). (12])

(ii) Use f(z) = (e'P* — €'*)/2%. This has a pole at 0 (apparently double, but
actually single: the numerator has a simple zero at 0). We use a semicircular
contour, indented to avoid this pole — a contour I' consisting of:

(i) I'y, the line segment [—R, —r| (R large, r > 0 small);

(ii) Ty, the semi-circle centre 0 radius 7 in the upper half-plane, clockwise (neg-
ative sense);

(iii) s = [r, R};
(iv) Ty, the semi-circle centre 0 radius R in the upper half-plane, anticlockwise
(positive sense). [4]

On Ty, |e??| = |eP@+W)| = ¢=PY < 1, as p > 0 and y > 0 in the upper half-
plane, and similarly [e??*| < 1. So |f(z)| = O(1/R?), and by (ML),

Jr, f=0(01/R?*).nR=0(1/R) — 0 as R — <.

As R — oo,r — 0, fFl f+ ng f — I, the required integral.

_ 10
On Iy, z =re",

f(2) = [(14ipz—p*2®/2...) = (1+igz—¢°2" /2...)] /2> = [i(p—q)—%(p2—q2)z+-~]/z,

dz/z = ire®df/re’® = idh, where 0 goes from 7 to 0. So (changing the sign to
interchange the limits of integration)

r=-| "lip—q) + O()(id6) — w(p—q)  (r —0).
I's 0

Since [ f = 0 by Cauchy’s Theorem, this gives I + 7(p — q) = 0:

I'=-n(p—q)=m(qg—p) (4]
Take p =0, ¢ = 2. Since 1 — cos 2z = 2sin’z, this gives

[ 2
2/ (bm x) dr =27,
T

— 00

or as the integrand is even,

/OOO(Sin x)de:ﬂ/Q. (14))

T
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