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Q1. (i)
(a). |z| = 2; z = 2( 1

2 + i
√

3
2 ) = 2(cos π/3 + i sin π/3): z = 2eiπ/3. [1]

(b) z5 = 25e5iπ/3 = 32e5iπ/3 or 32e−iπ/3 (polar); [1]
z5 = 32( 1

2 − i
√

3
2 ) = 16(1− i

√
3) (cartesian). [1]

(c) z−1 = 1
2e−iπ/3 (polar); [1]

z−1 =
1

1 + i
√

3
=

1− i
√

3
1 + 3

=
1
4
− i

√
3

4
(cartesian). ([1])

(ii) The singularities of 1/(1 + cosh z) are the zeros of 1 + cosh z, the points
where

cosh z =
1
2
(ez + e−z) = −1, e2z + 2ez + 1 = 0, (ez + 1)2 = 0,

ez = −1 = e(2n+1)iπ, z = (2n + 1)iπ. ([4])

Near such a point, take z = (2n + 1)iπ + ζ, ζ small.

1 + cosh z = 1 +
1
2
(e(2n+1)iπeζ + e−(2n+1)iπe−ζ) = 1− 1

2
(eζ + e−ζ).

Expanding the two exponential series, the constant terms go (they must, at a
zero), and the ζ terms, leaving

1 + cosh z = −1
2
ζ2 + O(ζ3).

So 1 + cosh z has a double zero at (2n + 1)iπ, so 1/(1 + cosh z) has a double
pole there. (This also follows from f(z) = ez/(1 + ez)2.) [4]
(iii) f(z) = g(z)/(z − a)k, where g is holomorphic and g(a) 6= 0. [3]
So

f ′ =
(z − a)kg′ − g.k(z − a)k−1

(z − a)2k
=

(z − a)g′ − kg

(z − a)k+1
.

The numerator is −kg(a) 6= 0 at z = a. So f ′ has a pole at a of order k + 1, as
required. [4]

Alternatively, the Laurent expansion of f at a has the form

f(z) = c−k(z − a)−k +
∞∑

n=−k+1

cn(z − a)n, c−k 6= 0.

We can differentiate this power series term by term, giving

f ′(z) = −kc−k(z − a)−k−1 +
∞∑

n=−k+1

ncn(z − a)n−1,

which shows that f ′ has a pole of order k + 1 at a.

1



Q2. (i) D is a star-domain with star-centre z0 ∈ D if for each z ∈ D the line-
egment [z0, z] ⊂ D. [2]
(ii) Proof of the Theorem of the Primitive. Take any z1 ∈ D. We prove that
F ′(z1) exists and is f(z1). As D is open and z1 ∈ D, some neighbourhood
N(z1, ε1) ⊂ D. For |h| < ε1, z1 + h ∈ N(z1, ε1) ⊂ D. So as z0, z1 + h ∈ D, the
line-segment [z0, z1 + h] ⊂ D (D star-shaped with star-centre z0). Let γ be the
triangle with vertices z0, z1, z1 + h, ∆ be the union of γ and its interior. Then
as D is star-shaped, ∆ ⊂ D. [3]

By Cauchy’s Theorem for Triangles,
∫

γ

f = 0, i.e.
∫

[z0,z1]

f +
∫

[z1,z1+h]

f +
∫

[z1+h,z0]

f = 0.

The first term is F (z1); the third term is −F (z1 + h). So

F (z1) +
∫

[z1,z1+h]

f − F (z1 + h) = 0 :
F (z1 + h)− F (z1)

h
=

1
h

∫

[z1,z1+h]

f.

([3])
As f is continuous (it is holomorphic!), ∀ε > 0 ∃δ > 0 s.t. |z − z1| < δ implies
|f(z) − f(z1)| < ε. For z on the line-segment [z1, z1 + h], |h| < δ implies
|z − z1| < δ, so |f(z)− f(z1)| < ε. So by (ML),

| 1
h

∫

[z1,z1+h]

f(z)− f(z1)
h

dz| ≤ 1
|h| .|h|ε = ε. ([3])

Now
F (z1 + h)− F (z1)

h
− f(z1) =

1
h

∫

[z1,z1+h]

(f(z)− f(z1))dz.

By above, the RHS has modulus < ε. So the LHS has modulus < ε, which says
that F ′(z1) exists and is f(z1), as required. [3]
(iii) (a) D is the complex plane with a cut along the negative real axis. For, the
formula fails to give a convergent integral for z = 0, as the real integral

∫ 1

0
dx/x

diverges. So 0 and all points on the far side of 1 from it, i.e. the negative real
axis, are not in D. But any point z not in D can be joined to 1 by a line-segment
avoiding the singularity at 0; on [1, z] the integrand 1/w is continuous, so the
integral

∫
[1,z]

dw/w is convergent. [3]
(b) h′(z) = f ′(g(z))g′(z) (chain rule) = g′(z)/g(z) (f ′(z) = 1/z, by the Theo-
rem of the Primitive) = g(z)/g(z) = 1 (g′ = g for the exponential function g).
So h′(z) = 1, h(z) = z as required. [3]
(Interpretation: f is the inverse function of the exponential function g, i.e. the
logarithm. The cut serves to make the logarithm single-valued.)
Note. If f is holomorphic in a neighbourhood of some point z, then f is differ-
entiable in some disc containing z, and discs are star-shaped. So the Theorem
of the Primitive will always apply locally – if we keep the domain small enough.
The danger is that if the domain becomes too big, the primitive ceases to be
single-valued (and so no longer counts as a function) – as with the logarithm in
this case, if the cut is omitted.

2



Q3. Cauchy-Taylor Theorem. If f is holomorphic in N(a,R), then

f(z) =
∞∑

n=0

cn(z − a)n (z ∈ N(a,R)), ([2])

where for r ∈ (0, R) and γ the circle with centre a and radius r,

cn = f (n)(a)/n! =
1

2πi

∫

γ

f(z)
(z − a)n+1

dz. ([2])

Proof. Choose z ∈ N(a,R), and then choose r with |z − a| < r < R; take
γ = γ(a, r). By the Cauchy Integral Formula,

f(z) =
1

2πi

∫

γ

f(w)
w − z

dw. ([2])

Now

w − z = (w − a)
(
1− z − a

w − a

)
:

1
w − z

=
∞∑

n=0

(z − a)n/(w − a)n+1. ([4])

Substitute and use uniformly convergent on compact subsets of N(a,R) to in-
terchange integration and summation:

f(z) =
∞∑

n=0

(z − a)n.
1

2πi

∫

γ

f(w)
(w − a)n+1

dw.

So

f(z) =
∞∑

n=0

cn(z − a)n, where cn =
1

2πi

∫

γ

f(w)
(w − a)n+1

dw = f (n)(a)/n!,

([4])
by the Cauchy integral formula for the nth derivative, CIF (n), as required.

Take f(z) = (1 + z)a. The complex power za = exp(a log z) has a branch-
point at 0 (as the logarithm does). So (1 + z)a has a branch-point at −1.
So the largest disc centre 0 in which it is holomorphic is D = {z : |z| < 1}.
f ′(z) = a(1 + z)a−1, f ′′(z) = a(a− 1)(1 + z)a−2, ... f (n)(z) = a(a− 1) . . . (a−
n + 1)(1 + z)a−n. So f (n)(0)/n! = a(a − 1) . . . (a − n + 1)/n! =

(
a
n

)
. By the

Cauchy-Taylor theorem,

(1 + z)a =
∞∑

n=0

(
a

n

)
zn, |z| < 1. ([4])

(Newton’s General Binomial Theorem). The ratio of consecutive terms on the
right is

a(a− 1) . . . (a− n)zn+1

(n + 1)!
/
a(a− 1) . . . (a− n + 1)zn

n!
= (a−n)z/(n+1) → −z (n →∞).

By the Ratio Test, this converges where | − z| < 1, i.e. where |z| < 1, showing
directly that the power series on the right has radius of convergence 1. [2]
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Q4. (i) f(z) := sin z/(z2+1) is holomorphic except at the roots of z2+1 = 0,
i.e. z = ±i. These are both inside γ. [2]
By the Cover-Up Rule, as f(z) = sin z/(z − i)(z + i),

Resif = sin i/(2i), Res−if = sin−i/(−2i) = Resif. ([2])

But by Euler’s formula sin z = (eiz − e−iz)/2i, so sin i = (e−1 − e)/2i =
i(e− e−1)/2,

∑
Resf = 2 sin i/(2i) = (e− e−1)/2. [2]

So by Cauchy’s Residue Theorem,
∫

γ

f = 2πi
∑

Resf = 2πi.(e− e−1)/2 = πi(e− e−1). ([2])

(ii) Use f(z) = (eipz − eiqz)/z2. This has a pole at 0 (apparently double, but
actually single: the numerator has a simple zero at 0). We use a semicircular
contour, indented to avoid this pole – a contour Γ consisting of:
(i) Γ1, the line segment [−R,−r] (R large, r > 0 small);
(ii) Γ2, the semi-circle centre 0 radius r in the upper half-plane, clockwise (neg-
ative sense);
(iii) Γ3 = [r,R];
(iv) Γ4, the semi-circle centre 0 radius R in the upper half-plane, anticlockwise
(positive sense). [4]
On Γ4, |eipz| = |eip(x+iy)| = e−py ≤ 1, as p ≥ 0 and y ≥ 0 in the upper half-
plane, and similarly |eiqz| ≤ 1. So |f(z)| = O(1/R2), and by (ML),∫
Γ4

f = O(1/R2).πR = O(1/R) → 0 as R →∞.
As R →∞, r → 0,

∫
Γ1

f +
∫
Γ3

f → I, the required integral.
On Γ2, z = reiθ,

f(z) = [(1+ipz−p2z2/2...)−(1+iqz−q2z2/2...)]/z2 = [i(p−q)−1
2
(p2−q2)z+...]/z,

dz/z = ireiθdθ/reiθ = idθ, where θ goes from π to 0. So (changing the sign to
interchange the limits of integration)

∫

Γ2

f = −
∫ π

0

[i(p− q) + O(r)](idθ) → π(p− q) (r → 0).

Since
∫
Γ

f = 0 by Cauchy’s Theorem, this gives I + π(p− q) = 0:
I = −π(p− q) = π(q − p). [4].

Take p = 0, q = 2. Since 1− cos 2x = 2sin2x, this gives

2
∫ ∞

−∞

( sin x

x

)2

dx = 2π,

or as the integrand is even,
∫ ∞

0

( sin x

x

)2

dx = π/2. ([4])

N. H. Bingham
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