M2PM3 EXAMINATION SOLUTIONS 2010

QL. (i) [9]
(a) By de Moivre’s Theorem,
cos nf +isin nf = e = ()" = (c +is)"
:c"—&—i(rll)cn_l.s— (Z) (Z) n3 g3 ( )c"_4.s4...
Taking real and imaginary parts:
cos n9:c"—< ) e 282+<Z) [3]

sin nf = ( > (Z 3]

(b) Divide (by ¢™ top and bottom on the right):

()= Q)+ () 3
-2+ (...
(ii) [4]

Take n =7: tan760 = 0 iff sin70 = 0 iff

t[7 — (;) 2+ (;) tt— 5 =o0. [1]

Now tan 76 = 0iff 70 = nm, n integer, § = nw/7. There are 7 roots (tan 76 = 0 iff
sin 76 = 0; by (i), this is a polynomial equation of degree 7; by the Fundamental

tan nf =

Theorem of Algebra, this has 7 roots). [1]
Taking n = 0 gives t =0, § = 0. Taking n = 1,2,...,6 gives the other 6 roots
as the roots of the polynomial of degree 6 above in [ . ]. [2]

(i) [7)

With v the ellipse 22 /a? 412 /b*> = 1 parametrized by x = acos, y = bsin 6,
fv dz/z = 2mi by Cauchy’s Residue Theorem, since 1/z has residue 1 at 0. [2]
So as z = acos @ + ibsinf gives dz = (—asin 6 + ibcos 0)d0,

. /2’T —asin@ + ibcos @
2w =
0

2
acosf +ibsin 6 2]

do

B T (—asin @ + ibcos 0)(a cos § — ibsin 0)
N /0 a? cos? 0 + b2 sin® 0
B 2™ (b% — a?) sin 6 cos O + iab(cos? 6 + sin® 0)
N /0 a2 cos? 0 + b2 sin? 0

dé.

Equating imaginary parts,

27
ab
df = 2m,
/0 a2 cos? 0 + b2 sin” 0 i
whence the result on dividing by ab. (3]
Parts (i), (ii) unseen; (iii) seen.




Q2. Laurent’s theorem: If f is holomorphic in the annular region r < |z—a| < R,
then f possesses an expansion

oo

n 1 f(z)dz
f(z) = n;wcn(z—a) (r<|z—al|<R), ¢,= 2m/7(z—a)"“ 2 + 2]
where v is any positively oriented contour in the annulus with winding number
1 about a.
(i) [6]. Take v the unit circle. Write the generating function as f(t) = exp(z(t—
1/t)/2), for fixed z. Then Laurent’s formula for ¢, gives

1
In(z) = 57 /exp{z(w — 1/w)/2}dw/w" . (2]
8!
With w = e
1 27 ) ) L
In(z) = o exp{z(e? — e79)/2}.e=(MFDW 10 gp
T Jo
1 2 . X .
= 5 exp{iz(e” — e~ /2i}.e70dp
™ Jo
1 27
=5 exp{—nif + izsin 6}d6. (2]
7r

The RHS is f:r = f_ow + foﬂ. In the first, replace 6 by —0:

T

1 s
Jn(z) = —[/0 exp{ind — iz sin 6}df —I—/O exp{—inf + izsin6}d0)] :

27
L[ .
In(2) ;[/0 cos{nb — zsin 0}d0). 2]
(ii) [3]
exp(%z(t—l/t)): (3 /2y /). (3 (=) (/25 1) = Z S (-
r=0 s=0 n=-—0o r—s=n

the rearrangements being justified by the absolute convergence of the exponen-
tial series. By uniqueness of Laurent expansions, the coefficient of t™ on RHS is
Jn(2). The result follows on replacing s by m, r by s + n =m + n.

(iii) [3] exp(5(y + z)(t —1/t)) is both > t"J,(y + z) and

)5 (2/2)7 5 [rls!,

exp(zy(t— 1/75)) exp(52(t=1/t)) = 32, " Jp(y). Sy t°s(2), whichis 35, " 35, ., Jo(y) Js(2).

Write r, s as m, n —m and equate coefficients: J,(y+2) =Y, Jm(y)Jn—m(2).
(iv) [2] This follows from the defining generating function on replacing ¢ by —t.
(v) [2] This follows from (i) and |cos .| <1 for real arguments.

Laurent’s theorem: seen, lectures. Problem (Bessel coefficients): (ii) seen, Prob-
lems.



Q3 (The Gamma function). (i) [5] For 0 < a < 1, the integrals for both I'(x)
and I'(1 — x) converge, and I'(z)['(1 — z) = [~ t*~te~tdt. [[°u™"e "du.

Substituting « = tv, the second integral on the right is ¢t!=* fooo v %e .
Cancelling powers of ¢ and changing the order of integration, the RHS becomes

oo o0 oo 1 o
/ v_mdv./ eVt gt :/ v". dv./ e Ydw (w:=(1+wv)t).
0 0 0 I+w 0

The w-integral is 1. Interchanging x and 1 —  (which preserves the LHS, and
so the RHS also) gives

Uz—l

r(a:)m—x):/om T

(i) [5] Cut the plane along the positive real axis. Take f(z) := 2%71/((1 + 2);
this is now holomorphic, except for a simple pole at z = —1 = ¢, with residue
(by the cover-up rule) e’™(@=1) Take ~ the keyhole contour consisting of:
71, the top of the z-axis between € and R;
v2, a large circle radius R, +ve sense [avoiding the cut];
v3, the bottom of the z-axis from R to €;
~4, & small circle around the origin of radius €, -ve sense [avoiding the cut].
S f =10, F =X L, say.
I = Tas R— o0, e — 0.
By ML, I, = O((R*"'/R).R) = O(R* ') - 0 as R — 00, as a < 1.
On V3, 2 = $627Ti7 sa—1 — $a71627ri(a71)7 so I3 — _627ri(a71)“[ — _p2miag
By ML, I4 = O(¢* 1) = O(¢*) - 0 as e — 0, as a > 0.
By Cauchy’s Residue Theorem, this gives

dv. (5]

I(1 — 20y = 97 emila=) — _omjeina .
I = —2mie™ /(1 — e*™*) = —1.2i /("™ — ™) = —1r/ — sin7a = 7/ sin wa.

(iii) [3] Changing a, z in (ii) to z, v and combining with (i) gives

I(z)I'(1—=z) =7/sin7z (0<z<1).

(iv) [3] Since I'(2)I'(1 — z) — 7/ sin wz vanishes on the interval (0, 1), by above,
and this set has a limit point in the region (the plane less the integers) in which
the function is holomorphic, it vanishes identically by analytic continuation).
So for all complex z,

1 sinz

F(z)I'(1—2) =n/sinrwz, F(lz) Ta—2) =

(v) [4] The Gamma function I'(z) has poles at 0 and the negative integers. So
I'(1 — 2) has poles at the positive integers, and I'(2)['(1 — z) has poles at the
integers. So too does 7/sin 7z. But I'(z) has no zeros (or sinwz would have a
pole). So: I'(z), I'(1 — 2), 7/ sin 7z have poles but no zeros; 1/I'(z), 1/T'(1 — z),
(sin 7z)/m are entire — they have (integer) zeros but no poles.

All seen — (v) re analytic continuation in Ch. II, (ii) re integration in Ch. III.



Q4. (i) [10] Write cos 0 = (% + e7%)/2, and then z := €%, v for the unit
circle. Then dz = ie?df, df = dz/(iz),

7 / dz / dz
= " =1
5 12[l —a(z +1/2) + a?] o [az? —a?z — z +a]

- | @=e=a =i ), emvae = =

So the integrand has simple poles at a, 1/a, only the first being inside . The
residue at a of 1/((z —a)(z — 1/a)) is 1/(a —1/a) = a/(a® — 1) = —a/(1 — a?),
by the Cover-Up Rule. So by Cauchy’s Residue Theorem,

7 —a 2

I =-2m.——: = —. 4
P> 1—a? 4]
For |a| > 1, the pole inside 7 is now 1/a, with residue 1/(1/a — a) =

a/(1 —a?) = —a/(a® — 1). The argument above now gives

2m
a2 _ 1 [ ]

(i) [10] Take f(z) := €**/(a® + 2%)? and v the semicircle v, in the upper half-

plane with base v2 := [-R, R]. [2]
On|z| =R, y=1Imz>0, f(2) = e®.e7Y/(a® +2%)2, | f| = O(1/R*), so by ML
=O(R/R*) =0(1/R?) - 0as R — 1
[, f=0(R/R") = O(1/R%) ; 1]
while
> e'® *  cos x < cos x
S . PN R Y
/w 1= e | e, whet
(1]
f has double poles at %ia, of which only ia is inside 7. [1]
For z =ia + ¢, ¢ small,
eilia+¢) I o
F6) =t ey = ¢ O i) (L (f2ia)
- , . et .
= s 2(1+iC+..)1—Clia...) = < 2(1+i¢(1+1/a)+...).
The coefficient of 1/¢ on RHS is Res;of = —i(1+ 1/a).e”%/(4a?). (3]
So by Cauchy’s Residue Theorem, 21 = 2mi.[—i(1 + 1/a).e~%/(4a?)]:
7(1+41/a)
I= 4aZes 2]

Both parts are unseen in this form, but are variants or extensions of exam-
ples done in lectures.

N. H. Bingham



