
M2PM3 EXAMINATION SOLUTIONS 2010

Q1. (i) [9]
(a) By de Moivre’s Theorem,

cos nθ + i sin nθ = einθ = (eiθ)n = (c + is)n

= cn + i

(
n

1

)
cn−1.s−

(
n

2

)
cn−2.s2 − i

(
n

3

)
cn−3.s3 +

(
n

4

)
cn−4.s4 . . .

Taking real and imaginary parts:

cos nθ = cn −
(

n

2

)
cn−2s2 +

(
n

4

)
cn−4s4 . . . , [3]

sin nθ =
(

n

1

)
cn−1s−

(
n

3

)
cn−3s3 . . . . [3]

(b) Divide (by cn top and bottom on the right):

tan nθ =

(
n
1

)
t− (

n
3

)
t3 +

(
n
5

)
t5 . . .

1− (
n
2

)
t2 +

(
n
4

)
t4 . . .

. [3]

(ii) [4]
Take n = 7: tan 7θ = 0 iff sin 7θ = 0 iff

t[7−
(

7
3

)
t2 +

(
7
5

)
t4 − t6] = 0. [1]

Now tan 7θ = 0 iff 7θ = nπ, n integer, θ = nπ/7. There are 7 roots (tan 7θ = 0 iff
sin 7θ = 0; by (i), this is a polynomial equation of degree 7; by the Fundamental
Theorem of Algebra, this has 7 roots). [1]
Taking n = 0 gives t = 0, θ = 0. Taking n = 1, 2, . . . , 6 gives the other 6 roots
as the roots of the polynomial of degree 6 above in [ . ]. [2]
(iii) [7]

With γ the ellipse x2/a2+y2/b2 = 1 parametrized by x = a cos θ, y = b sin θ,∫
γ

dz/z = 2πi by Cauchy’s Residue Theorem, since 1/z has residue 1 at 0. [2]
So as z = a cos θ + ib sin θ gives dz = (−a sin θ + ib cos θ)dθ,

2πi =
∫ 2π

0

−a sin θ + ib cos θ

a cos θ + ib sin θ
dθ [2]

=
∫ 2π

0

(−a sin θ + ib cos θ)(a cos θ − ib sin θ)
a2 cos2 θ + b2 sin2 θ

dθ

=
∫ 2π

0

(b2 − a2) sin θ cos θ + iab(cos2 θ + sin2 θ)
a2 cos2 θ + b2 sin2 θ

dθ.

Equating imaginary parts,
∫ 2π

0

ab

a2 cos2 θ + b2 sin2 θ
dθ = 2π,

whence the result on dividing by ab. [3]
Parts (i), (ii) unseen; (iii) seen.
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Q2. Laurent’s theorem: If f is holomorphic in the annular region r < |z−a| < R,
then f possesses an expansion

f(z) =
∞∑

n=−∞
cn(z−a)n (r < |z−a| < R), cn =

1
2πi

∫

γ

f(z)dz

(z − a)n+1
, [2 + 2]

where γ is any positively oriented contour in the annulus with winding number
1 about a.
(i) [6]. Take γ the unit circle. Write the generating function as f(t) = exp(z(t−
1/t)/2), for fixed z. Then Laurent’s formula for cn gives

Jn(z) =
1

2πi

∫

γ

exp{z(w − 1/w)/2}dw/wn+1. [2]

With w = eiθ,

Jn(z) =
1
2π

∫ 2π

0

exp{z(eiθ − e−iθ)/2}.e−(n+1)iθ.eiθdθ

=
1
2π

∫ 2π

0

exp{iz(eiθ − e−iθ)/2i}.e−niθdθ

=
1
2π

∫ 2π

0

exp{−niθ + iz sin θ}dθ. [2]

The RHS is
∫ π

−π
=

∫ 0

−π
+

∫ π

0
. In the first, replace θ by −θ:

Jn(z) =
1
2π

[
∫ π

0

exp{inθ − iz sin θ}dθ +
∫ π

0

exp{−inθ + iz sin θ}dθ] :

Jn(z) =
1
π

[
∫ π

0

cos{nθ − z sin θ}dθ]. [2]

(ii) [3]

exp(
1
2
z(t−1/t)) =

( ∞∑
r=0

(z/2)rtr/r!
)
.
( ∞∑

s=0

(−)s(z/2)st−s/s!
)

=
∞∑

n=−∞
tn

∑
r−s=n

(−)s(z/2)r+s/r!s!,

the rearrangements being justified by the absolute convergence of the exponen-
tial series. By uniqueness of Laurent expansions, the coefficient of tn on RHS is
Jn(z). The result follows on replacing s by m, r by s + n = m + n.
(iii) [3] exp( 1

2 (y + z)(t− 1/t)) is both
∑

n tnJn(y + z) and
exp( 1

2y(t−1/t)).exp( 1
2z(t−1/t)) =

∑
r trJr(y).

∑
s tsJs(z), which is

∑
n tn

∑
r+s=n Jr(y)Js(z).

Write r, s as m, n−m and equate coefficients: Jn(y + z) =
∑

m Jm(y)Jn−m(z).
(iv) [2] This follows from the defining generating function on replacing t by −t.
(v) [2] This follows from (i) and | cos .| ≤ 1 for real arguments.
Laurent’s theorem: seen, lectures. Problem (Bessel coefficients): (ii) seen, Prob-
lems.
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Q3 (The Gamma function). (i) [5] For 0 < x < 1, the integrals for both Γ(x)
and Γ(1− x) converge, and Γ(x)Γ(1− x) =

∫∞
0

tx−1e−tdt.
∫∞
0

u−xe−udu.
Substituting u = tv, the second integral on the right is t1−x

∫∞
0

v−xe−tvdv.
Cancelling powers of t and changing the order of integration, the RHS becomes
∫ ∞

0

v−xdv.

∫ ∞

0

e−(1+v)tdt =
∫ ∞

0

v−x.
1

1 + v
dv.

∫ ∞

0

e−wdw (w := (1 + v)t).

The w-integral is 1. Interchanging x and 1 − x (which preserves the LHS, and
so the RHS also) gives

Γ(x)Γ(1− x) =
∫ ∞

0

vx−1

1 + v
dv. [5]

(ii) [5] Cut the plane along the positive real axis. Take f(z) := za−1/((1 + z);
this is now holomorphic, except for a simple pole at z = −1 = eiπ, with residue
(by the cover-up rule) eiπ(a−1). Take γ the keyhole contour consisting of:
γ1, the top of the x-axis between ε and R;
γ2, a large circle radius R, +ve sense [avoiding the cut];
γ3, the bottom of the x-axis from R to ε;
γ4, a small circle around the origin of radius ε, -ve sense [avoiding the cut].∫

γ
f =

∑4
1

∫
γi

f =
∑4

1 Ii, say.
I1 → I as R →∞, ε → 0.
By ML, I2 = O((Ra−1/R).R) = O(Ra−1) → 0 as R →∞, as a < 1.
On γ3, z = xe2πi, za−1 = xa−1e2πi(a−1), so I3 → −e2πi(a−1).I = −e2πiaI.
By ML, I4 = O(εa−1.ε) = O(εa) → 0 as ε → 0, as a > 0.

By Cauchy’s Residue Theorem, this gives

I(1− e2πi(a−1)) = 2πi.eπi(a−1) = −2πieiπa :

I = −2πieπia/(1− e2πia) = −π.2i/(e−πia − eπia) = −π/− sin πa = π/ sinπa.

(iii) [3] Changing a, x in (ii) to x, v and combining with (i) gives

Γ(x)Γ(1− x) = π/ sin πx (0 < x < 1).

(iv) [3] Since Γ(z)Γ(1− z)− π/ sin πz vanishes on the interval (0, 1), by above,
and this set has a limit point in the region (the plane less the integers) in which
the function is holomorphic, it vanishes identically by analytic continuation).
So for all complex z,

Γ(z)Γ(1− z) = π/ sin πz,
1

Γ(z)
.

1
Γ(1− z)

=
sinπz

π
.

(v) [4] The Gamma function Γ(z) has poles at 0 and the negative integers. So
Γ(1 − z) has poles at the positive integers, and Γ(z)Γ(1 − z) has poles at the
integers. So too does π/ sin πz. But Γ(z) has no zeros (or sin πz would have a
pole). So: Γ(z), Γ(1− z), π/ sin πz have poles but no zeros; 1/Γ(z), 1/Γ(1− z),
(sin πz)/π are entire – they have (integer) zeros but no poles.
All seen – (v) re analytic continuation in Ch. II, (ii) re integration in Ch. III.
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Q4. (i) [10] Write cos θ = (eiθ + e−iθ)/2, and then z := eiθ, γ for the unit
circle. Then dz = ieiθdθ, dθ = dz/(iz),

I =
∫

γ

dz

iz[1− a(z + 1/z) + a2]
= i

∫

γ

dz

[az2 − a2z − z + a]

= i

∫

γ

dz

(az − 1)(z − a)
=

i

a

∫

γ

dz

(z − 1/a)(z − a)
. [4]

So the integrand has simple poles at a, 1/a, only the first being inside γ. The
residue at a of 1/((z − a)(z − 1/a)) is 1/(a− 1/a) = a/(a2 − 1) = −a/(1− a2),
by the Cover-Up Rule. So by Cauchy’s Residue Theorem,

I =
i

a
.2πi.

−a

1− a2
: I =

2π

1− a2
. [4]

For |a| > 1, the pole inside γ is now 1/a, with residue 1/(1/a − a) =
a/(1− a2) = −a/(a2 − 1). The argument above now gives

I =
2π

a2 − 1
. [2]

(ii) [10] Take f(z) := eiz/(a2 + z2)2 and γ the semicircle γ1 in the upper half-
plane with base γ2 := [−R, R]. [2]
On |z| = R, y = Im z ≥ 0, f(z) = eix.e−y/(a2 + z2)2, |f | = O(1/R4), so by ML∫

γ1
f = O(R/R4) = O(1/R3) → 0 as R →∞, [1]

while
∫

γ2

f →
∫ ∞

−∞

eix

(a2 + x2)2
dx =

∫ ∞

−∞

cos x

(a2 + x2)2
dx = 2

∫ ∞

0

cos x

(a2 + x2)2
dx = 2I.

[1]
f has double poles at ±ia, of which only ia is inside γ. [1]
For z = ia + ζ, ζ small,

f(z) =
ei(ia+ζ)

(a2 + (−a2 + 2iaζ + ζ2))2
= e−a.eiζ .ζ−2.(2ia)−2.(1 + ζ/2ia)−2

=
e−a

−4a2
.ζ−2.(1 + iζ + . . .)(1− ζ/ia . . .) =

e−a

−4a2
.ζ−2.(1 + iζ(1 + 1/a) + . . .).

The coefficient of 1/ζ on RHS is Resiaf = −i(1 + 1/a).e−a/(4a2). [3]
So by Cauchy’s Residue Theorem, 2I = 2πi.[−i(1 + 1/a).e−a/(4a2)]:

I =
π(1 + 1/a)

4a2ea
. [2]

Both parts are unseen in this form, but are variants or extensions of exam-
ples done in lectures.

N. H. Bingham
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