
M2PM3 EXAMINATION SOLUTIONS 2011

Q1. (i) [4] Write c, s for cos θ, sin θ. By de Moivre’s theorem, cos nθ+i sin nθ =
einθ = (eiθ)n = (c+ is)n. Taking real parts gives

cosnθ = cn−
(
n

2

)
cn−2s2+

(
n

4

)
cn−4s4 . . . = cn−

(
n

2

)
cn−2(1−c2)+

(
n

4

)
cn−4(1−c2)2 . . . = Tn(c),

so cos nθ is a polynomial Tn in c = cos θ.
(ii) [4] The leading coefficient in Tn is 1 +

(
n
2

)
+
(
n
4

)
+ . . . =

∑
k even

(
n
k

)
. By

the Binomial Theorem, (a+ b)n =
∑n

k=0

(
n
k

)
an−kbk. Write

∑
e :=

∑
k even

(
n
k

)
,∑

o :=
∑

k odd

(
n
k

)
. Taking a = b = 1 and a = 1, b = −1 in the Binomial

Theorem,

2n =
∑
e

+
∑
o

, 0 =
∑
e

−
∑
o

.

Add and halve: 2n−1 =
∑

e: Tn has leading coefficient 2n−1.
(iii) [4, 4, 4] T1(x) = x; T1(cosπ/2) = cosπ/2 = 0; take P1 := T1. As
cos 2θ = 2cos2θ − 1 (T2(x) = 2x2 − 1),

T2(cos(θ/2)) = 2cos2(θ/2)− 1 = cos θ : cos(θ/2) =

√
1 + cos θ

2
. (∗)

Taking θ = π/2 in (∗): as cos(π/2) = 0, (a) cos(π/4) = 1/
√
2; (b) cos(π/4)

is a zero of the polynomial P2 := T2 of degree 2 with integer coefficients:
P2(cos(π/4)) = T2(cos(π/4)) = 0. Taking θ = π/4 in (∗): (a) cos(π/8) =√
(1 + 1/

√
2)/2; (b) cos(π/8) is a zero of the polynomial P3 := P2(T2) = T2(T2)

of degree 4: P3(cos(π/8)) = T2(T2(cos(π/8))) = T2(cos(π/4)) = 0.
(a) Continuing in this way, the above starts the induction, and the inductive
step comes from putting θ = π/2n in (∗). So by induction, cos(π/2n) is obtained
from the integers 1 and 2, divisions and n− 1 iterated square roots [4].

We write Pn := Pn−1(T2) = Pn−2(T2(T2)) = . . ., the (n − 1)th functional
iterate of T2 (P1(x) = T1(x) = x: the 0th iterate is the identity). Then

Pn(cos(π/2
n)) = Pn−1(T2(cos(π/2

n))) (definition of Pn)

= Pn−1(cos(π/2
n−1)) (by (∗) with θ = π/2n−1)

= Pn−2(cos(π/2
n−2)) (by above with n− 1 for n)

= . . . = P2(cos(π/4)) = 0. (∗∗)

(b) The polynomial Pn, being the (n−1)-fold functional iterate of the quadratic
T2 (where T2(x) = 2x2 − 1), has integer coefficients. By (∗∗), cos(π/2n) is a
zero of Pn, and so is an algebraic number of the required type. [4]
(c) As Pn is the (n − 1)th iterate of the quadratic T2(x) = 2x2 − 1, Pn has
degree 2n−1 (for n = 1, we get the 0th iterate, the identity map – but for n = 1
cos θ = T1(cos θ), T1(x) = x, T1 the identity). [4]
Alternatively for (b) and (c): as cosnθ = Tn(cos θ), cos θ = Tn(cos θ/n), so 0 =
cosπ/2 = T2n−1(cos((π/2)/2n−1)) = T2n−1(cos(π/2n)). So take Pn := T2n−1 ,
again with degree 2n−1.
((i) and (ii): seen; (iii) unseen.)
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Q2. (i) [3] Cantor’s theorem for nested compact sets. If Kn is a sequence of
nested (decreasing –Kn+1 ⊂ Kn) non-empty compact sets in the complex plane,
their intersection is non-empty.
(ii) [3] Theorem (Cauchy’s Theorem for Triangles). If f is holomorphic in a
domain D containing a triangle γ and its interior I(γ) – then

∫
γ
f = 0.

[14] Proof. Join the three midpoints of the sides of the triangle γ. This quadri-

sects γ into 4 similar triangles. Call these Γ1 to Γ4: then
∫
γ
f =

∑4
1

∫
Γi

f . For,

there are 12 terms, 3 for each of the 4 triangles. The ‘outer 6’ add to
∫
γ
f ; the

‘inner 6’ cancel in pairs. So, for at least one i,
∣∣∣∫Γi

f
∣∣∣ ≥ 1

4 |I|, where I =
∫
γ
f .

For if not, each
∣∣∣∫Γi

f
∣∣∣ < 1

4 |I|, so |I| =
∣∣∫

Γ
f
∣∣ = ∣∣∣∑4

1

∫
Γi

f
∣∣∣ ≤ ∑4

1 |
∫
Γi

f | <∑4
1

1
4 |I| = |I|, a contradiction. Call this Γi γ1. So:

∣∣∣∫γ1
f
∣∣∣ ≥ 1

4 |I|.
Now quadrisect γ1. Repeating the argument above, at least one of the 4 result-

ing triangles, γ2 say, has
∣∣∣∫γ2

f
∣∣∣ ≥ 1

4

∣∣∣∫γ1
f
∣∣∣ ≥ 1

42 |I|. Continue (or use induction):
we obtain a sequence of triangles γ1, γ2, ..., γn, ... s.t. if ∆ denotes the union of γ
and its interior I(γ) and similarly for ∆n, γn, ∆n+1 ⊂ ∆n ⊂ ... ⊂ ∆2 ⊂ ∆1 ⊂ ∆;

lengths: L(γn) = 2−nL (L = L(γ), length of γ); and 4−n|I| ≤
∣∣∣∫γn

f
∣∣∣. (i)

The sets ∆n are decreasing, closed and bounded (so compact), and non-empty.
So by Cantor’s Theorem,

∩∞
n=1 △n ̸= ∅. Take z0 ∈ ∩∞

n=1△n. As ∆ is compact,
z0 ∈ ∆. Since by assumption f is holomorphic in D, f is holomorphic at z0. So

∀ϵ > 0, ∃δ > 0 s.t. ∀z with 0 < |z − z0| < δ,
∣∣∣ f(z)−f(z0)

z−z0
− f

′
(z0)

∣∣∣ < ϵ:

|f(z)− f(z0)− f
′
(z0)(z − z0)| < ϵ|z − z0|. (∗)

As diam(γn) = 2−n ↓ 0 as n → ∞, ∆n tends to {z0} as n → ∞. So
∆N ⊂ N(z0, δ) for all large enough n. For this n, and all z ∈ ∆n, |z − z0| ≤
L(γn) = 2−nL (Triangle Lemma, Problems 4). Now f(z0) + f

′
(z0)(z − z0) =

F
′
(z), with F (z) = f(z0)(z − z0) +

1
2f

′
(z0)(z − z0)

2.∫
γn
[f(z0) + f

′
(z0)(z − z0)] dz =

∫
γn

F
′
(z) dz

=
∫ b

a
F

′
(z(t))ż(t) dt (if γn is parametrised by [a, b])

= [F (z(t))]bt=a (Fundamental Th. of Calculus)
= F (z(b))− F (z(a))
= F (z(a))− F (z(a)) = 0 (z(b) = z(a) as γn is closed).

This and (∗) give
∣∣∣∫γn

f
∣∣∣ < ϵ

∫
γn

|z−z0| dz. But
∫
γn

|z−z0| dz ≤ maxγn |z−z0| ·
L(γn) (ML) ≤ L(γn) · L(γn) (Triangle Lemma) ≤ 4−nL2 (L(γn) ≤ L · 2−n). So

|
∫
γn

f | < ϵ.4−nL2. (ii)

By (i) and (ii): 4−n|I| ≤
∣∣∣∫γn

f
∣∣∣ ≤ ϵ·4−n ·L2 : 4−n|I| ≤ ϵ4−nL2 : |I| ≤ ϵ·L2.

But ϵ > 0 is arbitrarily small. So |I| = 0: I = 0:
∫
γ
f = 0. //

(Covered in full in lectures.)
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Q3 (Euler’s reflection formula for the Gamma function).
(i) [5] For 0 < x < 1, the integrals for both Γ(x) and Γ(1 − x) converge, and
Γ(x)Γ(1− x) =

∫∞
0

tx−1e−tdt.
∫∞
0

u−xe−udu.

Substituting u = tv, the second integral on the right is t1−x
∫∞
0

v−xe−tvdv.
Cancelling powers of t and changing the order of integration, the RHS becomes∫ ∞

0

v−xdv.

∫ ∞

0

e−(1+v)tdt =

∫ ∞

0

v−x.
1

1 + v
dv.

∫ ∞

0

e−wdw (w := (1+ v)t).

The w-integral is 1. Interchanging x and 1 − x (which preserves the LHS, and
so the RHS also) gives

Γ(x)Γ(1− x) =

∫ ∞

0

vx−1

1 + v
dv. [5]

(ii) [5] Cut the plane along the positive real axis. Take f(z) := za−1/((1 + z);
this is now holomorphic, except for a simple pole at z = −1 = eiπ, with residue
(by the cover-up rule) eiπ(a−1). Take γ the keyhole contour consisting of:
γ1, the top of the x-axis between ϵ and R;
γ2, a large circle radius R, +ve sense [avoiding the cut];
γ3, the bottom of the x-axis from R to ϵ;
γ4, a small circle around the origin of radius ϵ, -ve sense [avoiding the cut].∫

γ
f =

∑4
1

∫
γi
f =

∑4
1 Ii, say.

I1 → I as R → ∞, ϵ → 0.
By ML, I2 = O((Ra−1/R).R) = O(Ra−1) → 0 as R → ∞, as a < 1.
On γ3, z = xe2πi, za−1 = xa−1e2πi(a−1), so I3 → −e2πi(a−1).I = −e2πiaI.
By ML, I4 = O(ϵa−1.ϵ) = O(ϵa) → 0 as ϵ → 0, as a > 0.

By Cauchy’s Residue Theorem, this gives

I(1− e2πi(a−1)) = 2πi.eπi(a−1) = −2πieiπa :

I = −2πieπia/(1− e2πia) = −π.2i/(e−πia − eπia) = −π/− sinπa = π/ sinπa.

(iii) [3] Changing a, x in (ii) to x, v and combining with (i) gives

Γ(x)Γ(1− x) = π/ sinπx (0 < x < 1).

(iv) [3] Since Γ(z)Γ(1− z)− π/ sinπz vanishes on the interval (0, 1), by above,
and this set has a limit point in the region (the plane less the integers) in which
the function is holomorphic, it vanishes identically by analytic continuation. So
for all complex z,

Γ(z)Γ(1− z) = π/ sinπz,
1

Γ(z)
.

1

Γ(1− z)
=

sinπz

π
.

(v) [4] The Gamma function Γ(z) has poles at 0 and the negative integers. So
Γ(1 − z) has poles at the positive integers, and Γ(z)Γ(1 − z) has poles at the
integers. So too does π/ sin πz. But Γ(z) has no zeros (or sinπz would have a
pole). So: Γ(z), Γ(1− z), π/ sin πz have poles but no zeros; 1/Γ(z), 1/Γ(1− z),
(sin πz)/π are entire – they have (integer) zeros but no poles.
All seen – (v) re analytic continuation in Ch. II, (ii) re integration in Ch. III.
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Q4 (i) [10]. In :=
∫∞
0

1
1+xn dx = π

n sinπ/n (n = 2, 3, ...).

First Proof: sector contour (single-valued integrand). Let f(z) := 1/(1 + zn),
and take the contour as a sector, with γ1 = [0, R], γ2 on the arc |z| = R,
0 ≤ arg z ≤ 2π/n, and γ3 the path back to the origin. By ML,

∫
γ2

f =

O(R−n.R) → 0 as R → ∞, and
∫
γ1

f → I. On γ3, z goes from R to O,

z = xe2πi/n, dz = e2πi/n dx. So
∫
γ3

f → −e2πi/nI. So
∫
γ
f → I

(
1− e2πi/n

)
.

By CRT:
∫
γ
f = 2πi

∑
Resf , and f singular where zn = −1 = eiπ = e(2k+1)π,

z = eiπ(2k+1)/n. Only k = 0, z = eiπ/n is inside γ. This is a simple pole. Write
f(z) = (z− eiπ/n)/((1+ zn)(z− eiπ/n). By the Cover-Up and L’Hospital Rules,

Reseiπ/nf = lim
z→eiπ/n

z − eiπn

zn + 1
= lim

z→eiπ/n

1

nzn−1
=

1

neiπ(n−1)/n
=

eiπ/n

neiπ
= −eiπ/n

n
.

I =
2πi

n
· −eiπ/n

1− e2πi/n
=

π

n
· −2i

e−iπ/n − eiπ/n
=

π

n sinπ/n
.

Second Proof: by the integral of III.6, or Q3(ii) (keyhole contour, many-valued
integrand). Put xn = y, x = y1/n, dx = (1/n)y(1/n)−1dy.

I =

∫ ∞

0

1

n
.
y(1/n)−1dy

1 + y
=

π

n sin(π/n)
.

(ii) [10]. To prove
∑∞

n=1 1/n
2 = π2/6 (Euler). We quote the Squares Lemma:

cotπz is uniformly bounded on the squares CN with vertices (N + 1
2 )(±1± i).

Proof. Take f(z) = 1/z2. Then f(z) cotπz has simple poles at z = n ̸= 0
residue f(n)/π = 1/(πn2), and a triple pole at z = 0. Near 0,

f(z) cotπz =
cosπz

z2 sinπz
=

1− π2z2

2 + ...

z2
(
πz − π3z3

6 + ...
)

=
1

πz3
.(1− π2z2

2
+ ...)(1 +

π2z2

6
− ...) =

1

πz3
.(1− π2z2

3
+ ...).

So Res0 f(z) cotπz = −π/3. Take f(z) = 1/z2. By CRT:∣∣∣∣∫
CN

cotπz

z2
dz

∣∣∣∣ = 2πi
∑

Res = 2πi

(
−π/3 + (

−1∑
n=−N

+
N∑

n=1

)
1

πn2

)
(Cover-Up Rule).

By ML and the Squares Lemma: as cotπz = O(1), 1/z2 = O(1/N2) on CN ,
which has length O(N), |LHS| = O(1).O(1/N2).O(N) = O(1/N) → 0. So

−π
3 + 2

π

∑N
n=1 1/n

2 → 0: ζ(2) :=
∑∞

n=1 1/n
2 = π2/6.

Second Proof. We quote the infinite product for sin: sin z = zΠ∞
1 (1 − z2

n2π2 ).

So sin z
z =

∑∞
k=0

(−)kz2k

(2k+1)! = Π∞
1 (1− z2

n2π2 ). Equate coefficients of z2:

− 1
3! = − 1

π2 .
∑∞

1
1
n2 : ζ(2) =

∑∞
1 1/n2 = π2/6.

(All seen – lectures, or problem sheets).

N. H. Bingham
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