M2PM3 EXAMINATION SOLUTIONS 2011

Q1. (i) [4] Write ¢, s for cos 0, sin@. By de Moivre’s theorem, cos nf+isin nf =
e = ()" = (c +is)". Taking real parts gives

n [\ n—22, (") n-a.4 n_ [T\ n—2 2 N\ n—4 212
snd = " — .= 1— 1— .oo=Ty(e),
cosnf = ¢ <2>c s +<4)c s c <2>c ( c)+<4)c (1-¢%) (c)

so cos nf is a polynomial T}, in ¢ = cos .

(i) [4] The leading coefficient in T3, is 1+ (5) + (}) 4+ .- = Dk coen (1) By
the Binomial Theorem, (a4 b)" = >, (})a™ *bF. Write Y-, := >, Loen (1)
>0 = Yk oaq (+)- Taking a = b = 1 and @ = 1,b = —1 in the Binomial

Theorem,
DO VIES B
e o e o

Add and halve: 2”71 =3 : T, has leading coefficient 2.
(iii) [4, 4, 4] Th(z) = =z; Ti(cosm/2) = cosmw/2 = 0; take P; := Ti. As
cos 20 = 2cos?0 — 1 (Tp(z) = 222 — 1),

Ts(cos(0/2)) = 2cos*(A/2) — 1 = cos 6 : cos(6/2) = 4/ y. (%)

Taking 6 = 7/2 in (x): as cos(n/2) = 0, (a) cos(n/4) = 1/v/2; (b) cos(w/4)
is a zero of the polynomial P, := T of degree 2 with integer coefficients:
Py(cos(m/4)) = Ty(cos(m/4)) = 0. Taking § = w/4 in (x): (a) cos(w/8) =
\/ (1 +1/4/2)/2; (b) cos(r/8) is a zero of the polynomial P3 := Py (Ty) = To(T5)
of degree 4: Ps(cos(n/8)) = To(T2(cos(m/8))) = Ta(cos(m/4)) = 0.
(a) Continuing in this way, the above starts the induction, and the inductive
step comes from putting § = 7/2" in (*). So by induction, cos(w/2™) is obtained
from the integers 1 and 2, divisions and n — 1 iterated square roots [4].
We write P, := P,,_1(T2) = P,—2(T2(T3)) = ..., the (n — 1)th functional
iterate of Ty (Pi(x) = Ti(x) = x: the Oth iterate is the identity). Then
P, (cos(m/2")) P, _1(Tx(cos(mw/2™))) (definition of P,)
= P,_1(cos(m/2"7 1)) (by (%) with § = 7/2"~1)
= P,_s(cos(m/2"7?)) (by above with n — 1 for n)
= ...= Py(cos(m/4)) = 0. (%)

(b) The polynomial P, being the (n — 1)-fold functional iterate of the quadratic
Ty (where To(z) = 22% — 1), has integer coefficients. By (x*), cos(m/2") is a
zero of P,, and so is an algebraic number of the required type. [4]

(c) As P, is the (n — 1)th iterate of the quadratic Th(z) = 22? — 1, P, has
degree 2"~1 (for n = 1, we get the Oth iterate, the identity map — but for n = 1
cos =Ty (cos @), T (z) = z, Ty the identity). [4]

Alternatively for (b) and (c): as cosnd = Ty, (cos ), cos = T,,(cos0/n), so 0 =
cosm/2 = Tyn-1(cos((7/2)/2" 1)) = Ton-1(cos(n/2™)). So take P, := Ton1,
again with degree 271,

((i) and (ii): seen; (iii) unseen.)



Q2. (i) [3] Cantor’s theorem for nested compact sets. If K, is a sequence of
nested (decreasing — K41 C K,,) non-empty compact sets in the complex plane,
their intersection is non-empty.

(i1) [3] Theorem (Cauchy’s Theorem for Triangles). If f is holomorphic in a
domain D containing a triangle v and its interior I(7y) — then fv f=0.

[14] Proof. Join the three midpoints of the sides of the triangle . This quadri-
sects «y into 4 similar triangles. Call these I'; to I'y: then fv f= Z;L fFi f. For,

there are 12 terms, 3 for each of the 4 triangles. The ‘outer 6’ add to f7 f; the

I f‘ > 11|, where I = [ f.

For if not, each ’frf’ < i|[|, so |I] = |f1“f| - ‘Z%frf’ < Zﬂfr fl <
%i|]| = |I|, a contradiction. Call this I'; 1. So: ’f% f‘ > 411

Now quadrisect ;. Repeating the argument above, at least one of the 4 result-

‘inner 6’ cancel in pairs. So, for at least one 1,

ing triangles, v, say, has ‘fw f’ > i ‘f% f‘ > 4i2|1'|. Continue (or use induction):
we obtain a sequence of triangles v1, 72, ..., Vn, ... 8.t. if A denotes the union of
and its interior I(7) and similarly for A,,, ¥, Apt1 C A, C ... T Ay C A CA;
lengths: L(y,) =27"L (L = L(y), length of v); and 47 "|I| < ‘fv f‘ (i)

The sets A,, are decreasing, closed and bounded (so compact), and non-empty.
So by Cantor’s Theorem, (\o—; &, # 0. Take 29 € NS, A,. As A is compact,
zo € A. Since by assumption f is holomorphic in D, f is holomorphic at zy. So

Ve > 0,30 > 0 s.t. Vz with 0 < |z — 29| < 6, M f/(zo))<e:

zZ—Zz0

If(2) = f(20) — f (20)(2 — 20)| < €|z — 2] (+)

As diam(vy,) = 27" | 0 as n — oo, A, tends to {z} as n — oco. So
AN C N(zp,0) for all large enough n. For this n, and all z € A, |z — 20| <
L(v,) = 27"L (Triangle Lemma, Problems 4). Now f(zo) + f (20)(z — 20) =
F'(2), with F(2) = f(20)(z — 20) + 3 (20) (2 — 20)?.
S, [f(z0) + ' (20)(2 = 20)] dz f F'(2)dz
f ¥y (2(t ) 2(t)dt (if 7, is parametrised by [a, b])
= [F(2(t)))’., (Fundamental Th. of Calculus)

= F(:(b) - F(x(a))
= F(z(a)) — F(z(a)) =0 (z(b) = z(a) as ~, is closed).

This and () give ‘f f‘ < €f |z — 20| dz. But f% |z — 20| dz < max,, |z— 2]
L(vn) (ML) < L(vn) - L(vn) (Trlangle Lemma) <47 "L2 (L(vy,) < L-27"). So

|/ fl<ed "L (44)

By (i) and (ii): 4~"|I| < )f% f) <ed L2 4 I <ed"LP: 1) <e L2
But € > 0 is arbitrarily small. So |I| =0: I =0: f“/ f=0.//
(Covered in full in lectures.)



Q3 (Euler’s reflection formula for the Gamma function).

(i) [5] For 0 < = < 1, the integrals for both I'(x) and I'(1 — ) converge, and
L(z)D(1—z) = [T t* e tdt. [ u™ e du.

Substituting « = tv, the second integral on the right is ¢t!=* fooo v %e .
Cancelling powers of ¢ and changing the order of integration, the RHS becomes

o0 o0 o0 1 (o]
/ v_mdv./ e~ (Vg :/ v " dv./ e dw (w:=(14+v)t).
0 0 0 L+w 0

The w-integral is 1. Interchanging x and 1 — x (which preserves the LHS, and
so the RHS also) gives

szl

r(a;)m—x):/ooolﬂ

(i) [5] Cut the plane along the positive real axis. Take f(z) := 2271/((1 + 2);
this is now holomorphic, except for a simple pole at z = —1 = €', with residue
(by the cover-up rule) €7@~ Take ~ the keyhole contour consisting of:
71, the top of the z-axis between € and R;
v2, a large circle radius R, +ve sense [avoiding the cut];
~3, the bottom of the z-axis from R to e;
~4, a small circle around the origin of radius ¢, -ve sense [avoiding the cut].
J f=0), f=X1 L, say.
I, > TasR—o00,e—0.
By ML, I, = O((R*"'/R).R) = O(R*!) - 0 as R — 00, as a < 1.
On Y3, 2 = ZZ?eQTri, ya—1l — xa71€2ﬂ'i(a71)’ so I3 — _627ri(a71).1 — _e2miag.
By ML, Iy = O(¢* 1) = O(e*) - 0 as ¢ — 0, as a > 0.
By Cauchy’s Residue Theorem, this gives

I(1 — 2=y = 97 emila=1) — _opjeina .
I = —2mie™ /(1 — e2™%) = —7.2i /(™™ — ™) = —5r/ — sinwa = 7/ sin7wa.

(iii) [3] Changing a, = in (ii) to z, v and combining with (i) gives

dv. (5]

Nx)'(1—2) =n/sinmz 0<z<1).
(iv) [3] Since I'(2)I'(1 — z) — w/ sin 7wz vanishes on the interval (0, 1), by above,
and this set has a limit point in the region (the plane less the integers) in which
the function is holomorphic, it vanishes identically by analytic continuation. So
for all complex z,

. 1 1 sinz
I'(z)I'(1—z) =n/sinwz, T T2 =

(v) [4] The Gamma function I'(z) has poles at 0 and the negative integers. So
['(1 — 2) has poles at the positive integers, and I'(2)['(1 — z) has poles at the
integers. So too does 7/sin 7z. But I'(z) has no zeros (or sinwz would have a
pole). So: I'(z), I'(1 — 2), m/sin mz have poles but no zeros; 1/I'(z), 1/T'(1 — z),
(sin 7z)/m are entire — they have (integer) zeros but no poles.

All seen — (v) re analytic continuation in Ch. II, (ii) re integration in Ch. III.




Q4 () [10]. I, := [[¥ i do = e (R=2,3,.0).

First Proof. sector contour (single-valued integrand). Let f(z) := 1/(1 + 2"),
and take the contour as a sector, with v; = [0, R], 72 on the arc |z| = R,
0 < arg z < 27/n, and 73 the path back to the origin. By ML, fm f =

O(R™™.R) =+ 0 as R — oo, and f%f — I. On 73, z goes from R to O,
2z = xze?™/" dz = e*™/" dx. So f% f — —e*™/"[. So f,yf — I(l — e?mi/n),
By CRT: fv f =2miY Resf, and f singular where 2" = —1 = '™ = ¢(k+D7
z = em@kED/n Only k =0, z = /™ is inside . This is a simple pole. Write
f(z) = (z—€™/™) /(14 2™)(z — €'™/™). By the Cover-Up and L’Hospital Rules,

) P ) 1 1 6i7r/n ei'lr/n
Resgin/mf = lim ——— = lim = — = — = —
2—seim/n 2Z" 4+ 1 »sein/n nzn—1 netm(n—1)/n netmw n
omi  —ei™/m s —24 s

Izi- =

n 1—em/n  pn e-im/n_eim/n  psinm/n
Second Proof: by the integral of 1I1.6, or Q3(ii) (keyhole contour, many-valued
integrand). Put 2" =y, z = yl/", de = (1/n)y(1/”)*1dy.

7 o1 y(/m—1gy T
_/0 n 1+y  nsin(x/n)

(ii) [10]. To prove Y2, 1/n? = 7?/6 (Euler). We quote the Squares Lemma:
cot 7z is uniformly bounded on the squares Cy with vertices (N + )(£1 £ ).
Proof. Take f(z) = 1/z%. Then f(z)cot7wz has simple poles at z = n # 0
residue f(n)/m = 1/(7n?), and a triple pole at z = 0. Near 0,

2.2
COS % 11—+ ...
t Tz = = 2
f(z)cotmz 2sinnz | 22 (7rz— % I )
1 w222 w222 1 w222
= —(1— (1 — )= —=.(1—-
7r23( 2+)(+6 ) 7r23( 3+)
So Resg f(z)cotmz = —7/3. Take f(z) = 1/2%. By CRT:
cotmz ! N
/CN e dz‘ = 27riZRes = 27i (—77/3 + ( Z +Z)7m2> (Cover-Up Rule).
n=—N n=1

By ML and the Squares Lemma: as cotmz = O(1), 1/2%2 = O(1/N?) on Cy,
which has length O(N), |[LHS| = O(1).0(1/N?).O(N) = O(1/N) — 0. So
I+ 25 1/n? = 0: ((2) = 300, 1/n? = 12/6. 2

Second Proof. We quote the infinite product for sin: sin z = 2II5°(1 — —5=).

n2m2
S sinz __ oo (*)kzmc = II%°(1 22 E ffici f 2.
0 == =31 0 @irnr = " (1 — 757)- Equate coefficients of z*:
—di == 000 5 ((2) = X7 1/n? = 72 /6.

(All seen — lectures, or problem sheets).

N. H. Bingham



