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II1.9. Infinite products for sin, cos and tan.
From III.8 (Lecture 32(11)):
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Similarly,
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Now (with D := d/dz the differentiation operator)
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Dlog tan 52 = cosec z, Dlog sinz = cot z,
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Integrating (ii) gives (using II for product, as we do Y for sum)
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Taking exponentials,
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(both sides — 1 as z — 0, accounting for the constant of integration). Simi-
larly, integrating (i) gives
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log tan 5% = n27r2

Take exponentials:
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tan 52’ = CZHeven(l - W)/H‘Jdd(l - n27r2)'

Both products — 1 as z — 0, so for small z, LHS ~ %z, RHS ~ cz: ¢ =1/2.
Replace z by 2z:
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(cancelling 4 in (22)?/(2n)?). From (iii) and (iv),
42>
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Note that the infinite products for sin and cos display zeros at the integers
and the half-integers, as they should.
Taking z = 7/2 in the product (iii) for sin:
1 1
-1 00
This is Wallis” product for m (John WALLIS (1616-1703), Arithmetica infin-
itorum, 1656 — see Coursework 2 Q5 for Wallis’ product by Real Analysis).
By (iii) and the power series for sin,
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Equate coefficients of 2%
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again. Similarly, equating coefficients of z* gives
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The LHS is ((2)® = (72/6)> = n1/36. By above, the RHS is >5°1/n* +
2.74/120. So
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)= (10— 6) = 47*/360 = 7*/90
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again. The same method shows that ((6) := >7°1/nS is a rational multiple
of 7%, etc.

We quote (Weierstrass’ product for the Gamma function)

1/T(2) = zeTI2 {(1 + %)e_z/"}

(where « is Euler’s constant — this shows again that I" has poles, 1/I" has
zeros, at 0,—1,—2,... ). From this and I'(2)['(1 — 2) = 7/sin 7z, we can
recover the product (iii) for the sin (exercise).



