m2pm3l11.tex

Lecture 11. 1.2.2011.

(iii) Riemann surfaces

Think of log, not going from **C** to **C**, but from **C** to *R*, where *R* is a doubly infinite stack of copies \mathbf{C}_k of **C**, one for each $k \in \mathbf{Z}$, 'spliced together' along their positive real axes so that $\theta \to \theta + 2\pi$ takes one from \mathbf{C}_k to \mathbf{C}_{k+1} . This is a *Riemann surfaces* (G.F.B. RIEMANN (1926-66) in 1851; Felix KLEIN (1849-1925) in 1882).

The origin O is a 'point of bad behaviour' of $\log z$: a *singularity* (see later) – a *branch-point*.

If
$$e^{w_i} = z_i \ (i = 1, 2)$$
:

$$e^{w_1+w_2} = e^{w_1}e^{w_2} = z_1 \cdot z_2,$$

$$w_1 + w_2 = \log(z_1 \cdot z_2),$$

$$\log(z_1 \cdot z_2) = \log z_1 + \log z_2,$$

$$\log(z_1/z_2) = \log z_1 - \log z_2.$$

Recall: in the real case, $y = \log x$ if $e^y = x$. Differentiating (implicitly) w.r.t. x:

$$e^{y}dy/dx = 1,$$
 $dy/dx = 1/e^{y} = 1/x,$ $dy = dx/x,$ $y = \int dx/x.$

As $e^0 = 1$, $\log 1 = 0$: $y = \int_1^x du/u$; and $y = \log x$:

$$\log x = \int_1^x du/u.$$

Using complex differentiation (II.2), and complex integration (II.4), we can extend this to \mathbf{C} , *provided*:

(i) We integrate along the *line-segment* [1, z] joining 1 to z in C;
(ii) [1, z] avoids the singularity z = 0 (branch-point).
So in C,

$$\log z = \int_1^z dw/w, \quad \text{or} \quad \int_{[1,z]} dw/w$$

works, *provided* that z does not lie on the negative real line or O, i.e. *provided* that we work with the *cut* plane. For details, see Exam, 2009, Q2.

6. Complex Powers

Recall in the real case, $a^x = e^{x \log a}$. In the complex case, $\log z$ is many-valued, so z^w is many valued:

 $z^w := e^{w \log z}.$

Branch points (continued).

The many-valuedness of $\log z$, z^w arises because if we perform a complete revolution about the origin, the argument arg z increases by 2π . If we prevent complete revolutions about the origin by cutting the plane as above, $\log z$, z^w become single-valued. Here 0 is a *branch-point*. It is the point where different branches of the function (sheets of the Riemann surface) meet. Similarly with $\log(z - z_0)$, $(z - z_0)^w$ for complete revolutions about z_0 , where z_0 is a branch point. Similarly, 0 is a branch-point for $z^{1/n}$ (*n*-valued; the *n* branches meet at 0).

2. Complex Differentiation and the Cauchy-Riemann Equations

Defn. We say $f : \mathbf{C} \to \mathbf{C}$ is differentiable at z_0 with derivative w, and write $f'(z_0) = w$, if

$$\frac{f(z) - f(z_0)}{z - z_0} \to w \text{ as } z \to z_0: \qquad f'(z_o) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

The point z_0 is that z may tend to z_0 in ANY way – i.e., from ANY direction; the limit has to be the same for all ways of approach. So the modulus $|z - z_0|$ is small; the argument $arg(z - z_0)$ can be anything.