m2pm3l12(11).tex

Lecture 12. 3.2.2011.

So if f is differentiable at z_0 with derivative $f'(z_0)$,

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall z \text{ with } |z - z_0| < \delta, \quad \left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \epsilon$$

 $(arg(z-z_0) \text{ can be anything!})$. Write $z-z_0 = h = k+il$ (k, l real), f = u+iv (u, v real): f(z) = u(x, y) + iv(x, y). 1. h real (l = 0).

$$\frac{u(x_0 + k, y_0) - u(x_0, y_0)}{k} + i \frac{v(x_0 + k, y_0) - v(x_0, y_0)}{k} \to f'(z_0) \quad (k \to 0) :$$

$$u_x(x_0, y_0) + i v_x(x_0, y_0) = f'(z_0), \quad \text{writing } u_x \text{ for } \partial u / \partial x.$$

2. h imaginary (k = 0).

$$\frac{u(x_0, y_0 + l) - u(x_0, y_0)}{l} + i \frac{v(x_0, y_0 + l) - v(x_0, y_0)}{il} \to f'(z_0) \quad (l \to 0) :$$

$$-iu_y(x_0, y_0) + v_y(x_0, y_0) = f'(z_0), \quad \text{writing } u_y \text{ for } \partial u/\partial y.$$

Combining, at (x_0, y_0)

$$u_x = v_y, \quad v_x = -u_y.$$

These are called the Cauchy-Riemann Equations, C-R.

So differentiability at $(x_0, y_0) \Rightarrow \text{C-R}$ at (x_0, y_0) : C-R are necessary for differentiability. They are not sufficient.

Example. $f(z) = \sqrt{|xy|}$ $(z = x + iy = re^{i\theta})$. So $f, u, v \equiv 0$ on both axes. So $u_x, u_y, v_x, v_y \equiv 0$ on both axes and C-R holds at (0,0). But:

$$\frac{f(z) - f(0)}{z - 0} = \frac{\sqrt{|r\cos\theta \cdot r\sin\theta|}}{re^{i\theta}} = e^{-i\theta}\sqrt{|\cos\theta\sin\theta|}.$$

RHS depends on θ , i.e. $how\ z=re^{i\theta}\to 0$: f is not differentiable at 0. But there is a partial converse:

Theorem. If f = u + iv and the partial derivatives u_x, u_y, v_x, v_y exist and are continuous in a neighbourhood of z_0 , and satisfy the C-R equations at z_0 , then f is differentiable at z_0 .

Proof. Take $h = k + i\ell$ so small that $z = z_0 + k$ is in the neighbourhood where partials are continuous; then

$$u(x_0+k,y_0+\ell)-u(x_0,y_0) = [u(x_0+k,y_0+\ell)-u(x_0,y_0+\ell)]+[u(x_0,y_0+\ell)-u(x_0,y_0)].$$

By the Mean Value Theorem (MVT): for some $\theta \in (0,1)$,

$$[u(x_0 + k, y_0 + \ell) - u(x_0, y_0 + \ell)]/k = u_x(x_0 + \theta k, y_0 + \ell)$$

= $u_x(x_0, y_0) + o(1)$ as $h \to 0$.

(here we use the o-notation for the error term: o(1) as $h \to 0$ ' means ' $\to 0$ as $h \to 0$ '), by continuity of the partial u_x . Similarly,

$$[u(x_0, y_0 + \ell) - u(x_0, y_0)]/\ell = u_y(x_0, y_0 + \theta'\ell) \text{ for some } \theta' \in (0, 1)$$

= $u_y(x_0, y_0) + o(1)$ as $h \to 0$.

Combining:

$$u(x_0 + k, y_0 + \ell) - u(x_0, y_0) = ku_x(x_0, y_0) + \ell u_y(x_0, y_0) + o(h),$$

where 'o(h)' means 'smaller order of magnitude then h as $h \to 0$.' This combines two error terms, o(k) and o(l), both o(h) as $h^2 = k^2 + l^2$, so $|k| \le |h|, |l| \le |h|$. Similarly,

$$v(x_0 + k, y_0 + \ell) - v(x_0, y_0) = kv_x(x_0, y_0) + \ell v_y(x_0, y_0) + o(h).$$

So

$$f(z_0 + h) - f(z_0) = [u(x_0 + k, y_0 + \ell) - u(x_0, y_0)] + i[v(x_0 + k, y_0 + \ell) - v(x_0, y_0)]$$

= $ku_x + \ell u_y + ikv_x + i\ell v_y + o(h)$.