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3. Connectedness.
The theory in Ch. II is about nice functions (differentiable ones: Section

2) on nice sets (non-empty, open, connected ones). Connectedness is a topo-
logical property, not specific to C. We meet it now rather than in I.2, as we
did not need it there – here it is essential.
Defn. In a topological space (in particular a metric space, in particular Rd or
C) an open set S is disconnected ⇔ it is the union of two disjoint non-empty
open sets. Otherwise S is connected.
Example:

In R, (−1, 0) ∪ (0, 1) is disconnected, but (−1, 1) = (−1, 0) ∪ {0} ∪ (0, 1)
is connected.

This is the key illustrative example. The left and right open intervals
here have a common end-point, but as this is missing and not in the set its
absence serves to disconnect their union.
Connected Sets in R.
We quote: the connected sets on R are the intervals.

This shows that ‘connected’ as a technical term defined above is being
used in a sense consistent with its use in ordinary language.
Open Sets in R.

We quote: S open in R ⇔ S is a finite union or countably union of open
intervals.
Defn. A set S is polygonally connected if any two points in S can be joined
by a polygonal [continuous piecewise-linear curve] entirely contained in S.

We quote: (i) In C, an open set S is connected ⇔ it is polygonally con-
nected.
(ii) W.l.o.g., we can take the line-segments of the polygonal path horizontal
or vertical.

For Proof, see e.g. Ahlfors, p.56-57 (Chapter 2, Section 1.3).
For general (not necessarily open) sets, polygonal connectedness is too

restrictive, and we replace polygonal paths by paths (see Section 4 below).
If z1, z2 ∈ S, write z1 ∼ z2, (or z1 ∼S z2) if z1, z2 can be joined by a path

that is contained in S (the path can be taken polygonal if S is open). This
is an equivalence relation (reflexive, symmetric, and transitive), so it decom-
poses S into (disjoint) equivalence classes, called the connected components
of S.
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S is connected ⇔ it only has one connected component.
A connected set S is called simply connected ⇔ Sc is connected (‘no

holes’). Call S:
doubly connected ⇔ Sc has two connected components (‘one hole’ – e.g.,

an annulus);
triply connected ⇔ Sc has three connected components (‘two holes’);
n-ply connected ⇔ Sc has n connected components (‘n− 1 holes’).

Three examples:
1. Annulus: {z : 1 < |z| < 2} is doubly connected.
2. Disc: {z : |z| < 1} is simply connected.
3. Punctured disc: {z : 0 < |z| < 1} is doubly connected.
Note. When we meet Cauchy’s Residue Theorem (II.7), we find that our
functions f holomorphic on domains D have points of bad behaviour – sin-
gularities. Each singularity needs to be excluded fromD (by making a ‘hole’):
all the action is at the singularities.

4. Paths, Line Integrals, Contours

Defn. A curve γ : [a, b] → C is a C1-function γ : t 7→ γ(t) = γ1(t) + iγ2(t).
Call γ(a), the beginning point or start of γ, γ(b) the end-point or end of γ.
If γ : [a, b] → G, G open, G ⊂ C, call γ a curve in G.
If f : G → C is differentiable, f ◦ γ(t) 7→ f(γ(t)) : [a, b] → C, and
(f ◦ γ)′(t) = f

′
(γ(t))γ

′
(t) (Chain Rule).

We often need to join curves ‘end to end’, allowing ‘corners’, where things
are not smooth.
Defn. 1. A path γ is a finite set of curves, γ = {γ1, ..., γn} (where each γi is
in C1), s.t. the end-point of each γi is the start of γi+1.
2. A set S ⊂ C is pathwise connected if any two points of S can be joined by a
path entirely contained in S. (Polygonally connected ⇒ pathwise connected,
as the joining polygonal path is a joining path).

One can extend the definition above of connected sets to general sets (us-
ing the induced topology). We quote that:

pathwise connected ⇒ connected. The converse holds in C (but not in
general).
Example. The unit circle C is pathwise connected, and connected. It is not
polygonally connected (and it is closed, not open).
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