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Continue (or use induction): we obtain a sequence of triangles γ1, γ2, ..., γn, ...
s.t. if ∆ denotes the union of γ and its interior I(γ) and similarly for ∆n, γn,

∆n+1 ⊂ ∆n ⊂ ... ⊂ ∆2 ⊂ ∆1 ⊂ ∆;

lengths: L(γn) = 2−nL (L = L(γ), length of γ); and 4−n|I| ≤
∣∣∣∫γn f ∣∣∣.

The sets ∆n are decreasing, closed and bounded (so compact), and non-
empty. So by Cantor’s Theorem (Handout, or I.2.6),

∩∞
n=1 △n ̸= ∅.

Take z0 ∈ ∩∞
n=1△n. As ∆ is compact, z0 ∈ ∆. Since by assumption f is

holomorphic in D, f is holomorphic at z0. So

∀ϵ > 0, ∃δ > 0 s.t. ∀z with 0 < |z − z0| < δ,

∣∣∣∣∣f(z)− f(z0)

z − z0
− f

′
(z0)

∣∣∣∣∣ < ϵ :

|f(z)− f(z0)− f
′
(z0)(z − z0)| < ϵ|z − z0|.

As diam(γn) = 2−n ↓ 0 as n → ∞, ∆n tends to {z0} as n → ∞. So
∆N ⊂ N(z0, δ) for all large enough n. For this n, and all z ∈ ∆n, |z − z0| ≤
L(γn) = 2−nL (Triangle Lemma, Problems 4). Now

f(z0)+ f
′
(z0)(z− z0) = F

′
(z), with F (z) = f(z0)(z− z0)+

1

2
f

′
(z0)(z− z0)

2.

∫
γn
[f(z0) + f

′
(z0)(z − z0)] dz =

∫
γn
F

′
(z) dz

=
∫ b
a F

′
(z(t))ż(t) dt (if γn is parametrised by [a, b])

= [F (z(t))]bt=a (Fundamental Th. of Calculus)
= F (z(b))− F (z(a))
= F (z(a))− F (z(a)) (z(b) = z(a) as triangle γn is closed)
= 0.

This and and (∗) give ∣∣∣∣∫
γn
f
∣∣∣∣ < ϵ

∫
γn
|z − z0| dz.

But∫
γn
|z − z0| dz ≤ maxγn |z − z0| · L(γn) (ML)

≤ L(γn) · L(γn) (Triangle Lemma, Problem Sheet)
≤ 4−nL2 (L(γn) ≤ L · 2−n).
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Combining:

4−n|I| ≤
∣∣∣∣∫

γn
f

∣∣∣∣ ≤ ϵ · 4−n · L2. (ii)

By (i) and (ii):
4−n|I| ≤ ϵ4−nL2 : |I| ≤ ϵ · L2.

But ϵ > 0 is arbitrarily small. So |I| = 0: I = 0:
∫
γ f = 0. //

Cor. (Cauchy’s Theorem for Rectangles). If f is holomorphic in a domain
D containing a rectangle R and its interior - then

∫
R f = 0.

Proof. Bisect into two triangles, γ1, γ2:
∫
R f =

∫
γ1
f +

∫
γ2
f = 0 + 0 = 0. //

Similarly one obtains Cauchy’s Therem for Polygons: Triangulate.
Defn. 1. If z1, z2 ∈ C, write [z1, z2] for the line segment joining them in C.
2. A domain D is star-shaped (or, is a star domain) with star-centre z0 ∈ D
if, for all z ∈ D, the line-segment [z0, z] ⊂ D.
E.g. Discs are star-shaped. Convex sets are star-shaped.
E.g: D = ‘Union of two athletics tracks’ – star shaped with star-centre z0,
but not convex.

Theorem (of the Antiderivative). If f is holomorphic in a star-domain
D with star-centre z0,

F (z) =
∫
[z0,z]

f,

then F
′
= f : F is an antiderivative of f , and f is the derivative of F .

Proof. Take any z1 ∈ D. We prove F
′
(z1) exists and is f(z1). As D is open

and z1 ∈ D, some neighbourhood N(z1, ϵ1) ⊂ D. For |h| < ϵ1, z1+h ∈ D. As
z0, z1, z1+d ∈ D, the line-segments [z0, z1], [z0, z1+h] ⊂ D (D is star-shaped
with star-centre z0).

Let γ be the triangle with vertices z0, z1, z1+h,∆ be the union of γ and its
interior I(γ). Then ∆ ⊂ D. By Cauchy’s Theorem for triangle ∆,

∫
γ f = 0.

That is,∫
[z0,z1]

f+
∫
[z1,z1+h]

f+
∫
[z1,z1+h,z0]

f = 0 : F (z1)+
∫
[z1,z1+h]

f−F (z1+h) = 0.

So
F (z1 + h)− F (z1)

h
=

1

h

∫
[z1,z1+h]

f. (i)

2


