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Lecture 21. 24.2.2011.

7. Cauchy-Taylor Theorem.

Theorem (Cauchy’s Form of Taylor’s Theorem: Cauchy-Taylor Thm.)
If f is holomorphic in N(a,R) (R > 0), there exists constants cn s.t.

f(z) =
∞∑
n=0

cn(z − a)n (z ∈ N(a,R)),

where the coefficients cn are given by

cn =
f (n)(a)

n!
=

1

2πi

∫
γ

f(z)

(z − a)n+1
dz (γ = γ(a, r), 0 < r < R).

Proof. Choose z ∈ N(a,R), and then r with |z − a| < r < R. By CIF,

f(z) =
1

2πi

∫
γ

f(w)

w − z
dz.

But

1

w − z
=

1

(w − a)− (z − a)
=

1

(w − a)

1

1− z−a
w−a

=
1

w − a
·

∞∑
0

(z − a)n

(w − a)n
.

On γ = γ(a, r), |w − a| = r > |z − a|. So the series converges uniformly on
w. So we can interchange

∫
γ ... dw and

∑∞
0 :

f(z) =
1

2πi

∫
γ
f(w) ·

∞∑
0

(z − a)n

(w − a)n+1
dw =

∞∑
n=0

(z − a)n · 1

2πi

∫
γ

f(w)

(w − a)n+1
dw.

So (i) f(z) =
∑∞

0 cn(z − a)n, where (ii) cn = 1
2πi

∫
γ

f(w)
(w−a)n+1 dw = f (n)(a)

n!
, by

CIF(n). //

We already know [I.2.11] that a power series can be differentiated in-
finitely often. So the following are equivalent:
(i) f is holomorphic (differentiable once) throughout D;
(ii) f is differentiable infinitely often throughout D;
(iii) f is the sum its Taylor series throughout D (‘f is analytic’ in D).
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Compare the real case (Lecture 1, f(x) = exp(−1/x2))!
Note. Property (iii) – f is analytic – is equivalent to (i) – f is holomorphic.
So terms analytic and holomorphic can be used interchangeably.
Defn. If f(z) =

∑∞
0 cn(z − a)n and c0 = c1 = ... = ck−1 = 0, but ck ̸= 0, i.e.

f(z) = ck(z−a)k[1+ ck+1(z−a)+ ...], then we say that f has a zero of order
k at a. Then f(z) = (z − a)kg(z), g holomorphic, g(a) ̸= 0.

Theorem. If f is holomorphic and not ≡ 0, then the zeros of f are isolated :
each zero a has a neighbourhood containing no zeros other then itself.

Proof. If a is a zero of f of order k, f(z) = (z − a)kg(z), g holomorphic,
g(a) ̸= 0. As g is continuous, g(·) ̸= 0 in some neighbourhood of a. So
f(z) = (z − a)kg(z) ̸= 0 in this neighbourhood except at a. //

Cor. 1. If f is holomorphic in D, and has zeros zn with a limit point z0 ∈ D
– then f ≡ 0.

Proof. By the Cauchy-Taylor Theorem, if f (n)(a) = 0 for all n = 0, 1, 2, . . .,
then f ≡ 0 in some neighbourhood of a. So the set U of points at which f
and all its derivatives vanish is open (each point a of U has a neighbourhood
of points of U). If the complement of U in D is V := D \ U , V is the set
of points at which some derivative of f is non-zero. Each such derivative is
continuous (indeed, it is holomorphic). So if a ∈ V with f (n)(a) ̸= 0, by
continuity f (n) is also non-zero at all points close enough to a. This says that
V is open. So the set D, connected by definition of domain, is the disjoint
union of two open sets, U and V . By connectedness (II.3 , Lecture 14), one
of them must be empty. By the Theorem, U is non-empty (the zeros of f
are not isolated, so f must be ≡ 0 in some neighbourhood). So V is empty.
So f ≡ 0. //

Cor. 2 (Identity Theorem). If f1, f2 are holomorphic, and f1(zn) = f2(zn)
at zn with a limit point z0 ∈ D – then f1 ≡ f2 in D.

Proof. Apply Corollary (1) to f1 − f2. //

Cor. 3. A holomorphic function is uniquely determined by its values in
any arbitrarily small disc. Indeed, any infinite set with a limit point in the
domain of holomorphic will do.
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Note. Recall the example in Section 2.3 Connectedness. The above results
only work because we have restricted the domains D to be connected.
Harmonic functions and holomorphic functions. Call u(x, y) harmonic in D,
u ∈ H(D), if it has continuous 2nd-order partials, and satisfies Laplace’s
equations: ∆u := uxx + uyy = 0. As in II.2, given u, we can find f holomor-
phic (f ∈ H(D)) and v ∈ H(D) s.t. f = u+ iv, u, v ∈ H(D).

Recall that in II.2, we saw that continuity of partials of u, v (and the
CR equations) was equivalent to holomorphy of f . We now know that this is
equivalent to f being infinitely differentiable, and so to u, v being infinitely
differentiable. So we now know that assuming continuity of 2nd-order par-
tials (so as to have uxy = uyx, used in the proof that the CR equations imply
u, v harmonic) is in fact no restriction.
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