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Lecture 21. 24.2.2011.

7. Cauchy-Taylor Theorem.

Theorem (Cauchy’s Form of Taylor’s Theorem: Cauchy-Taylor Thm.)
If f is holomorphic in N(a, R) (R > 0), there exists constants ¢, s.t.
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On v = ~(a,r), |lw—al] =7 > |z — a|. So the series converges uniformly on
w. So we can interchange [, ...dw and 3 5%
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We already know [[.2.11] that a power series can be differentiated in-
finitely often. So the following are equivalent:
(i) f is holomorphic (differentiable once) throughout D;
(ii) f is differentiable infinitely often throughout D;
(iii) f is the sum its Taylor series throughout D (‘f is analytic’ in D).
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Compare the real case (Lecture 1, f(z) = exp(—1/z?))!

Note. Property (iii) — f is analytic — is equivalent to (i) — f is holomorphic.
So terms analytic and holomorphic can be used interchangeably.

Defn. If f(z) =X cu(z —a)" and ¢g = ¢1 = ... = cx—1 = 0, but ¢; # 0, i.e.
f(2) = cx(z—a)*[1 + 1 (2 —a) +...], then we say that f has a zero of order
k at a. Then f(z) = (2 — a)¥g(z), g holomorphic, g(a) # 0.

Theorem. If f is holomorphic and not = 0, then the zeros of f are isolated:
each zero a has a neighbourhood containing no zeros other then itself.

Proof. If a is a zero of f of order k, f(z) = (z — a)®g(z), g holomorphic,
g(a) # 0. As g is continuous, ¢g(-) # 0 in some neighbourhood of a. So
f(z) = (2 — a)kg(2) # 0 in this neighbourhood except at a. //

Cor. 1. If f is holomorphic in D, and has zeros z, with a limit point zy € D
—then f =0.

Proof. By the Cauchy-Taylor Theorem, if ™ (a) = 0 for all n = 0,1,2,...,
then f = 0 in some neighbourhood of a. So the set U of points at which f
and all its derivatives vanish is open (each point a of U has a neighbourhood
of points of U). If the complement of U in D is V := D\ U, V is the set
of points at which some derivative of f is non-zero. Each such derivative is
continuous (indeed, it is holomorphic). So if a € V with f™(a) # 0, by
continuity £ is also non-zero at all points close enough to a. This says that
V' is open. So the set D, connected by definition of domain, is the disjoint
union of two open sets, U and V. By connectedness (I1.3 , Lecture 14), one
of them must be empty. By the Theorem, U is non-empty (the zeros of f
are not isolated, so f must be = 0 in some neighbourhood). So V' is empty.

So f=0.//

Cor. 2 (Identity Theorem). If fi, f; are holomorphic, and fi(z,) = fa(z,)
at z, with a limit point zg € D — then f; = f; in D.

Proof. Apply Corollary (1) to f; — fa. //

Cor. 3. A holomorphic function is uniquely determined by its values in
any arbitrarily small disc. Indeed, any infinite set with a limit point in the
domain of holomorphic will do.



Note. Recall the example in Section 2.3 Connectedness. The above results
only work because we have restricted the domains D to be connected.
Harmonic functions and holomorphic functions. Call u(x,y) harmonic in D,
u € H(D), if it has continuous 2nd-order partials, and satisfies Laplace’s
equations: Au 1= Uy, + Uy, = 0. As in I1.2, given u, we can find f holomor-
phic (f € H(D)) and v € H(D) s.t. f=u+iv, u,v € H(D).

Recall that in I1.2, we saw that continuity of partials of u, v (and the
CR equations) was equivalent to holomorphy of f. We now know that this is
equivalent to f being infinitely differentiable, and so to u, v being infinitely
differentiable. So we now know that assuming continuity of 2nd-order par-
tials (so as to have wu,, = u,,, used in the proof that the CR equations imply
u, v harmonic) is in fact no restriction.



