
m2pm3l23(11).tex
Lecture 23. 1.3.2011.

3. Analytic continuation by Dirichlet series.
A Dirichlet series is one of the form

∑∞
n=1an/n

s, with an and s complex;
we always write s = σ + iτ . We quote that in the complex s-plane:
(i) the domain of absolute convergence is a half-plane of the form Re s > σa;
(ii) the domain of (conditional) convergence is a half-plane Re s = σc (where
−∞ ≤ σc ≤ σa ≤ +∞);
(iii) the Dirichlet series is holomorphic in its half-plane of convergence.
These results (for which see any book on Analytic Number Theory) depend
on the Abel and Dirichlet tests of convergence of series (see Handout on
website).
Example: The Riemann zeta function: ζ(s) =

∑∞
n=1 1/n

s.
For s = σ real, this is convergent iff σ > 1, so σa = 1 and the half-plane

of absolute convergence is σ > 1. Now for s = σ real,∑∞
n=1

(−)n−1/nσ =
∑
odd

1/nσ −
∑
even

1/nσ =
∑
o

−
∑
e

,

say. Now
∑

e =
∑∞

1 1/(2n)σ = 2−σ ∑∞
1 1/nσ = 2−σζ(σ). So∑∞

n=1
(−)n−1/nσ =

∑
o

−
∑
e

=
∑
o

−2−σζ(σ), ζ(σ) =
∑
o

+
∑
e

=
∑
o

+2−σζ(σ).

Subtract: ∑∞
n=1

(−)n−1/nσ − ζ(σ) = −2.2−σζ(σ) = −21−σζ(σ) :

∑∞
n=1

(−)n−1/nσ = (1− 21−σ)ζ(σ) :

ζ(σ) = (1− 21−σ)−1.
∑∞

n=1
(−)n−1/nσ. (∗)

Note that the series on RHS converges in σ > 0, by the Alternating Series
Test. Now let s be complex, and define

ζ(s) := (1− 21−s)−1.
∑∞

n=1
(−)n−1/ns.

By (iii) above, the second factor on RHS is holomorphic in σ > 0 (the first
factor is holomorphic as 2−s = e−s log 2 is). So we may use (∗) to continue
ζ(s) analytically from σ > 1 to σ > 0.
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Note. 1. It turns out that the behaviour of ζ in the strip 0 < σ < 1, and
in particular on and near the critical line σ = 1/2, is crucially important
in the study of the distribution of prime numbers – e.g., the Prime Number
Theorem (PNT) in Analytic Number Theory.
2. We quote (e.g., from the functional equation for the zeta function): ζ(z)
can be continued analytically to the whole plane, where it is holomorphic
except for a singularity at z = 1 (a simple pole of residue 1 – see §10 below).

4. Analytic continuation by identities.
Example: The Gamma function.

Recall Γ(x) :=
∫∞
0 tx−1e−t dt. By Real Analysis (Problems 4, Q4),

Γ(x)Γ(1− x) =
∫ ∞

0

vx−1

1 + v
dv (0 < x < 1).

By Complex Analysis (III.6 below),∫ ∞

0

vx−1

1 + v
dv =

π

sin πx
(0 < x < 1).

Combining:

Γ(x)Γ(1− x) =
π

sinπx
(0 < x < 1).

As (0, 1) ⊂ C is infinite and contains limit points (all its points are limit
points!) we can continue analytically:

Γ(z)Γ(1− z) =
π

sinπz
(z ∈ C).

(Euler’s reflection formula for the Gamma function – Exam 2010, Q3).
So RHS has no zeros (or sin would have a pole). So LHS has no zeros:

Cor. Γ(z) has no zeros for z ∈ C and has poles at z = 0,−1,−2, ....

So 1/Γ(z) has zeros at z = 0,−1,−2... and no poles. Hence 1/Γ(z) is
entire, and

1

Γ(z)
.

1

Γ(1− z)
=

sinπz

π
.

Here 1/Γ(z) is entire with zeros at 0,−1,−2, ..., 1/Γ(1 − z) is entire with
zeros at 1, 2, ..., and sin πz/π is entire with zeros at the integers. Then Γ(z),
Γ(1 − z), sin πz/π are meromorphic with the corresponding zeros, but no
poles.
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