m2pm3l23(11).tex Lecture 23. 1.3.2011.

3. Analytic continuation by Dirichlet series.

A Dirichlet series is one of the form $\sum_{n=1}^{\infty} a_n/n^s$, with a_n and s complex; we always write $s = \sigma + i\tau$. We quote that in the complex s-plane:

(i) the domain of absolute convergence is a half-plane of the form $Re \ s > \sigma_a$; (ii) the domain of (conditional) convergence is a half-plane $Re \ s = \sigma_c$ (where $-\infty \le \sigma_c \le \sigma_a \le +\infty$);

(iii) the Dirichlet series is holomorphic in its half-plane of convergence.

These results (for which see any book on Analytic Number Theory) depend on the Abel and Dirichlet tests of convergence of series (see Handout on website).

Example: The Riemann zeta function: $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$.

For $s = \sigma$ real, this is convergent iff $\sigma > 1$, so $\sigma_a = 1$ and the half-plane of absolute convergence is $\sigma > 1$. Now for $s = \sigma$ real,

$$\sum_{n=1}^{\infty} (-)^{n-1} / n^{\sigma} = \sum_{odd} 1 / n^{\sigma} - \sum_{even} 1 / n^{\sigma} = \sum_{o} - \sum_{e},$$

say. Now $\sum_e = \sum_1^\infty 1/(2n)^\sigma = 2^{-\sigma} \sum_1^\infty 1/n^\sigma = 2^{-\sigma} \zeta(\sigma)$. So

$$\sum_{n=1}^{\infty} (-)^{n-1} / n^{\sigma} = \sum_{o} -\sum_{e} = \sum_{o} -2^{-\sigma} \zeta(\sigma), \qquad \zeta(\sigma) = \sum_{o} +\sum_{e} = \sum_{o} +2^{-\sigma} \zeta(\sigma).$$

Subtract:

$$\sum_{n=1}^{\infty} (-)^{n-1} / n^{\sigma} - \zeta(\sigma) = -2.2^{-\sigma} \zeta(\sigma) = -2^{1-\sigma} \zeta(\sigma) :$$
$$\sum_{n=1}^{\infty} (-)^{n-1} / n^{\sigma} = (1-2^{1-\sigma})\zeta(\sigma) :$$
$$\zeta(\sigma) = (1-2^{1-\sigma})^{-1} \cdot \sum_{n=1}^{\infty} (-)^{n-1} / n^{\sigma}. \tag{*}$$

Note that the series on RHS converges in $\sigma > 0$, by the Alternating Series Test. Now let s be complex, and define

$$\zeta(s) := (1 - 2^{1-s})^{-1} \cdot \sum_{n=1}^{\infty} (-)^{n-1} / n^s.$$

By (iii) above, the second factor on RHS is holomorphic in $\sigma > 0$ (the first factor is holomorphic as $2^{-s} = e^{-s \log 2}$ is). So we may use (*) to continue $\zeta(s)$ analytically from $\sigma > 1$ to $\sigma > 0$.

Note. 1. It turns out that the behaviour of ζ in the strip $0 < \sigma < 1$, and in particular on and near the *critical line* $\sigma = 1/2$, is crucially important in the study of the distribution of prime numbers – e.g., the Prime Number Theorem (PNT) in Analytic Number Theory.

2. We quote (e.g., from the functional equation for the zeta function): $\zeta(z)$ can be continued analytically to the whole plane, where it is holomorphic except for a singularity at z = 1 (a simple pole of residue 1 – see §10 below).

4. Analytic continuation by identities.

Example: The Gamma function.

Recall $\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$. By Real Analysis (Problems 4, Q4),

$$\Gamma(x)\Gamma(1-x) = \int_0^\infty \frac{v^{x-1}}{1+v} \, dv \qquad (0 < x < 1).$$

By Complex Analysis (III.6 below),

$$\int_0^\infty \frac{v^{x-1}}{1+v} \, dv = \frac{\pi}{\sin \pi x} \qquad (0 < x < 1)$$

Combining:

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x} \qquad (0 < x < 1)$$

As $(0,1) \subset \mathbf{C}$ is infinite and contains limit points (all its points are limit points!) we can continue analytically:

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$
 $(z \in \mathbf{C}).$

(Euler's reflection formula for the Gamma function – Exam 2010, Q3).

So RHS has no zeros (or sin would have a pole). So LHS has no zeros:

Cor. $\Gamma(z)$ has no zeros for $z \in \mathbf{C}$ and has poles at z = 0, -1, -2, ...

So $1/\Gamma(z)$ has zeros at z = 0, -1, -2... and no poles. Hence $1/\Gamma(z)$ is entire, and

$$\frac{1}{\Gamma(z)} \cdot \frac{1}{\Gamma(1-z)} = \frac{\sin \pi z}{\pi}.$$

Here $1/\Gamma(z)$ is entire with zeros at $0, -1, -2, ..., 1/\Gamma(1-z)$ is entire with zeros at $1, 2, ..., and \sin \pi z/\pi$ is entire with zeros at the integers. Then $\Gamma(z)$, $\Gamma(1-z)$, $\sin \pi z/\pi$ are meromorphic with the corresponding zeros, but no poles.