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Lecture 24. 3.3.2011.
9. The Maximum Modulus Theorem. See Website - not examinable.

10. Laurent’s Theorem and Singularities.
There may be points where f is not holomorphic. There, a new kind of

expansion is needed (Pierre-Alphonse LAURENT (1813-54), in 1843).

Theorem (Laurent’s Theorem). If f is holomorphic in a domain D containing
the annulus 0 < R′ ≤ |z − a| ≤ R < ∞ – then f has an expansion

f(z) =
∞∑

n=−∞
cn(z − a)n (R′ ≤ |z − a| ≤ R),

where

cn =
1

2πi

∫
γ

f(z)

(z − a)n+1
dz (n ∈ Z)

and γ is a positively oriented contour in the annulus surrounding a.

Proof. Write C,C ′ for the circles centre a radius R,R′, γ for the closed path
consisting of: (i) C anticlockwise (+ve sense); (ii) a line segment L from C to
C ′; (iii) C ′ clockwise (-ve sense); (iv) L reversed, to get back to the starting
point on C. The open annulus is the interior I(γ) of γ. By CIF,

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw =

1

2πi

∫
C

f(w)

w − z
dw − 1

2πi

∫
C′

f(w)

w − z
dw

(the terms on RHS are from (i) and (iii), since those from (ii) and (iv) cancel).
On C, |w− a| = R > |z − a|, so 1/(w− z) =

∑∞
0 (z − a)n/(w− a)n+1 (as

in the Proof Cauchy-Taylor Theorem). So

∫
C

f(w)

w − z
dw =

∫
C
f(w)

∞∑
0

(z − a)n

(w − a)n+1
dw

=
∞∑
0

(z − a)n

2πi

∫
C

f(w)

(w − a)n+1
dw (by uniform convergence)

=
∞∑
0

cn(z − a)n, cn =
1

2πi

∫
C

f(w)

(w − a)n+1
dw.
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Similarly, on C ′, |w−a| = R′ < |z−a|, 1/(z−w) =
∑∞

0 (w−a)n/(z−a)n+1:

− 1

2πi

∫
C′

f(w)

w − z
dw =

1

2πi

∫
C′

f(w)

z − w
dw =

1

2πi

∫
C′
f(w) ·

∞∑
m=0

(w − a)m

(z − a)m+1
dw.

Interchanging
∫
and

∑
by uniform convergence as before, this gives

∞∑
m=0

(z−a)−m−1 · 1

2πi

∫
C′
f(w)(w−a)m dw =

−1∑
n=−∞

(z−a)n · 1

2πi

∫
C′

f(w)

(w − a)n+1

(writing n := −m− 1). Combining,

f(z) =
∞∑

n=∞
cn(z − a)n, cn =

1

2πi

∫
C or C ′

f(w)

(w − a)n+1
.

Here, each
∫
C or C ′ =

∫
γ (Deformation Lemma). //

Examples. 1. f(z) = exp(−1/z2), in any annulus 0 < R′ ≤ |z| ≤ R ≤ ∞: a
Laurent series of f at 0. Recall (Lecture 1) f is very badly behaved at 0.
2. Bessel functions (Exam 2010 Q2; Problems 7).

exp
(1
2
z(t− 1

t
)
)
=

∞∑
n=−∞

tnJn(z).

The LHS gives the generating function (GF) of the Bessel functions Jn(z).
Defn. In the Laurent series

∑∞
−∞ cn(z − a)n above:

∑∞
0 cn(z − a)n (holo-

morphic, by Cauchy-Taylor) is called the analytic, or regular, or holomorphic
part of f at a;

∑−1
−∞ cn(z − a)n is called the singular part.

If the singular part is a polynomial in 1/(z− a) of degree n, we say f has
a pole at a of order n. m = 1: simple pole, m = 2: double pole, etc.
When the singular part is not a polynomial – i.e., cn ̸= 0 for infinitely many
negative n – then a is called an essential singularity. Essential singularities
are points of very bad behaviour. (Branch-points are even worse!)
Examples. 1. sin z/z at 0: sin z/z → 1 (z → 0).
In such situations, if the function is either not defined at the point, or de-
fined with a value making the function discontinuous there, then the point
is a singularity. We then remove the singularity by defining the function to
have the right value – a removable singularity.
2. sin(1/z) has zeros at 1/z = nπ, z = 1/(nπ); 1/ sin(1/z) has poles at
z = 1/nπ → 0. Limits of poles are also points of very bad behaviour, and
are also called essential singularities.
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