m2pm3l25(11).tex Lecture 25. 7.3.2011.

11. Cauchy's Residue Theorem (CRT).

Defn. If f has a singularity at a, with singular part $\sum_{-\infty}^{-1} c_n (z-a)^n$, the coefficient c_{-1} of 1/(z-a) is called the *residue* of f at a, $Res_a f$.

Theorem (Cauchy's Residue Theorem, CRT). If f is holomorphic in a domain D except for finitely many singularities z_i , and γ is a contour with $\gamma \cup I(\gamma) \subset D$ – then

$$\int_{\gamma} f = 2\pi i \sum Resf,$$

where the sum is over the singularities z_i inside γ .

Proof. Surround each singularity z_i inside γ by a small circle γ_i , centre z_i , radius r_i . Let Γ be the closed path consisting of: (i) γ , anticlockwise (+ve sense); (ii) a path L_i from γ to γ_i ; (iii) γ_i clockwise (-ve sense); (iv) L_i reversed back to γ (one γ_i , L_i for each singularity inside γ).

As in the proof of Laurent's Theorem, $\int_{\Gamma} f = 0$ (Cauchy's Theorem). But

$$0 = \int_{\Gamma} f = \int_{\gamma} f + \sum_{i} \int_{L_{i}} f - \sum_{i} \int_{\gamma_{i}} f - \sum_{i} \int_{L_{i}} f = \int_{\gamma} - \sum_{i} \int_{\gamma_{i}} f :$$
$$\int_{\gamma} f = \sum_{i} \int_{\gamma_{i}} f.$$

In $\int_{\gamma_i} f$, the holomorphic part gives 0, by Cauchy's Theorem. If the singular part is $\sum_{-\infty}^{-1} c_n (z - z_i)^n$ (so c_{-1} , or $c_{-1,i}$, is the residue at z_i),

$$\int_{\gamma_i} f = \int_{\gamma_i} \sum_{-\infty}^{-1} c_n (z - z_i)^n \, dz = \sum_{-\infty}^{-1} c_n \int_{\gamma_i} (z - z_i)^n \, dz$$

(interchanging \int and Σ by *uniform* convergence, as in the Proof of Laurent's Theorem). By the Fundamental Integral (II.4, Lecture 16), the integral above is $2\pi i$ if n = -1 and 0 otherwise. So $\int_{\gamma} f = \sum_{i} 2\pi i c_{-1} = 2\pi i \sum_{i} Res f$, summed over singularities *inside* γ . //

12. Finding residues

Simple Pole of f at α : $f(z) = g(z)/(z - \alpha)$, g holomorphic at α , $g(\alpha) \neq 0$. Cauchy-Taylor Theorem: $g(z) = \sum_{0}^{\infty} c_n (z - \alpha)^n \ (c_0 \neq 0)$. So

$$f(z) = \frac{g(z)}{z - \alpha} = \frac{c_0}{z - \alpha} + c_1 + c_2(z - \alpha) + \dots$$

 $Res_{\alpha}f = \text{coefficient of } 1/(z-\alpha) \text{ on RHS} = c_0 = g(\alpha).$ So we get the Cover-up Rule.

$$Res_{\alpha}f = g(\alpha):$$

cover up $1/(z - \alpha)$, then substitute $z = \alpha$.

Multiple Poles. (a) If $z = \alpha$ is a multiple pole, put $z = \alpha + \zeta$ (ζ small), and power-series expand in powers of ζ : $Res_{\alpha} = \text{coefficient of } 1/\zeta$.

(b) Derivative Rule. If α is a pole of f of order m, $f(z) = g(z)/(z-\alpha)^m$ (g holomorphic at α , $g(\alpha) \neq 0$). Cauchy-Taylor Theorem: $g(z) = \sum_0^{\infty} c_n(z-\alpha)^n$, $c_n = g^{(n)}(\alpha)/n!$. So taking n = m - 1 gives

$$Res_{\alpha}f = g^{(m-1)}(\alpha)/(m-1)!$$

Note. 1. Do not use the Cover-Up rule for multiple poles! 2. Sometimes, we know the pole is simple (even though this may not be immediately obvious) – e.g., when the Laurent expansion only contains a $1/\zeta$). We may then find the residue by using the Cover-Up Rule.

Example (Ch. III). To find the residue at $i\pi/2$ of $f(z) := z^2 e^z/(1+e^{2z})$ (poles where $e^{2z} = e^{(2n+1)i\pi}$, $z = (n+\frac{1}{2})i\pi$, all simple).

$$f(z) := \frac{z^2 e^z}{1 + e^{2z}} = \frac{g(z)}{(z - i\pi/2)}, \qquad g(z) = \frac{(z - i\pi/2)}{(1 + e^{2z})} \cdot z^2 e^z.$$

Using the Cover-Up Rule, we find $Res_{i\pi/2} f = g(i\pi/2)$. The z^2e^z factor is $(i\pi/2)^2 \cdot e^{i\pi/2} = -i\pi^2/4$ at $i\pi/2$. The fraction on the right is an indeterminate form at $i\pi/2$, which we can evaluate by

(a) L'Hospital's Rule (just as in Real Analysis):

$$\frac{(z - i\pi/2)}{(1 + e^{2z})} \sim \frac{1}{2e^{2z}} \to -1/2 \qquad (z \to i\pi/2),$$

giving the residue as $(-1/2).(-i\pi^2/4) = i\pi^2/8$, as before, or (b) power-series expansion: with $z = i\pi/2 + \zeta$, the fraction is $z/[1 - (1 + 2\zeta + \cdots)] \rightarrow -1/2$ $(z \rightarrow i\pi/2)$, again as before.

You may wish to compare these two ways of finding the residue in this example. If you have a preference, this may guide you more generally.