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11. Cauchy’s Residue Theorem (CRT).

Defn. If f has a singularity at a, with singular part
∑−1

−∞ cn(z − a)n, the
coefficient c−1 of 1/(z − a) is called the residue of f at a, Resaf .

Theorem (Cauchy’s Residue Theorem, CRT). If f is holomorphic in a
domain D except for finitely many singularities zi, and γ is a contour with
γ ∪ I(γ) ⊂ D – then ∫

γ
f = 2πi

∑
Resf,

where the sum is over the singularities zi inside γ.

Proof. Surround each singularity zi inside γ by a small circle γi, centre zi,
radius ri. Let Γ be the closed path consisting of: (i) γ, anticlockwise (+ve
sense); (ii) a path Li from γ to γi; (iii) γi clockwise (-ve sense); (iv) Li

reversed back to γ (one γi, Li for each singularity inside γ).
As in the proof of Laurent’s Theorem,

∫
Γ f = 0 (Cauchy’s Theorem). But

0 =
∫
Γ
f =

∫
γ
f +

∑
i

∫
Li

f −
∑
i

∫
γi
f −

∑
i

∫
Li

f =
∫
γ
−

∑
i

∫
γi
f :

∫
γ
f =

∑
i

∫
γi
f.

In
∫
γi
f , the holomorphic part gives 0, by Cauchy’s Theorem. If the singular

part is
∑−1

−∞ cn(z − zi)
n (so c−1, or c−1,i, is the residue at zi),

∫
γi
f =

∫
γi

−1∑
−∞

cn(z − zi)
n dz =

−1∑
−∞

cn

∫
γi
(z − zi)

n dz

(interchanging
∫
and

∑
by uniform convergence, as in the Proof of Lau-

rent’s Theorem). By the Fundamental Integral (II.4, Lecture 16), the integral
above is 2πi if n = −1 and 0 otherwise. So

∫
γ f =

∑
i 2πic−1 = 2πi

∑
iResf ,

summed over singularites inside γ. //
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12. Finding residues
Simple Pole of f at α: f(z) = g(z)/(z − α), g holomorphic at α, g(α) ̸= 0.
Cauchy-Taylor Theorem: g(z) =

∑∞
0 cn(z − α)n (c0 ̸= 0). So

f(z) =
g(z)

z − α
=

c0
z − α

+ c1 + c2(z − α) + ... :

Resαf = coefficient of 1/(z − α) on RHS = c0 = g(α). So we get the
Cover-up Rule.

Resαf = g(α) :

cover up 1/(z − α), then substitute z = α.
Multiple Poles. (a) If z = α is a multiple pole, put z = α + ζ (ζ small), and
power-series expand in powers of ζ: Resα = coefficient of 1/ζ.
(b) Derivative Rule. If α is a pole of f of order m, f(z) = g(z)/(z − α)m (g
holomorphic at α, g(α) ̸= 0). Cauchy-Taylor Theorem: g(z) =

∑∞
0 cn(z −

α)n, cn = g(n)(α)/n!. So taking n = m− 1 gives

Resαf = g(m−1)(α)/(m− 1)!

Note. 1. Do not use the Cover-Up rule for multiple poles!
2. Sometimes, we know the pole is simple (even though this may not be im-
mediately obvious) – e.g., when the Laurent expansion only contains a 1/ζ).
We may then find the residue by using the Cover-Up Rule.
Example (Ch. III). To find the residue at iπ/2 of f(z) := z2ez/(1+e2z) (poles
where e2z = e(2n+1)iπ, z = (n+ 1

2
)iπ, all simple).

f(z) := z2ez/(1 + e2z) = g(z)/(z − iπ/2), g(z) =
(z − iπ/2)

(1 + e2z)
.z2ez.

Using the Cover-Up Rule, we find Resiπ/2 f = g(iπ/2). The z2ez factor is
(iπ/2)2.eiπ/2 = −iπ2/4 at iπ/2. The fraction on the right is an indeterminate
form at iπ/2, which we can evaluate by
(a) L’Hospital’s Rule (just as in Real Analysis):

(z − iπ/2)

(1 + e2z)
∼ 1

2e2z
→ −1/2 (z → iπ/2),

giving the residue as (−1/2).(−iπ2/4) = iπ2/8, as before, or
(b) power-series expansion: with z = iπ/2 + ζ, the fraction is z/[1 − (1 +
2ζ + · · ·)] → −1/2 (z → iπ/2), again as before.

You may wish to compare these two ways of finding the residue in this
example. If you have a preference, this may guide you more generally.
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