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Combining,
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So (dividing by v/27 and by €¥*/2, and reversing the direction of integration)

0o —%/2

(& ; 2
/ - e Wi = V2,
—oo 1/ 2T
The RHS is real, so the LHS is real. Take complex conjugates:
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This gives the characteristic function (CF) of the standard normal density
o(x) == e **/2/\/2x, as given in Lecture 1 (the CF is the Fourier transform
of a probability density).
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Example. We give a further example of translation of the line of integration.
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Take f(z) := z%¢*/(1 + €**): f has a singularity where 1 + ¢* = 0, €?* =
—1 = e®rHim o — (n+1/2)im. For v, take the rectangle with vertices £R,

+R + im, with v, :== [-R, R], 72 := [R,R +in], 73 :== [R+ im,— R + in),
74 := [-R + im,—R]. The only singularity of f inside v comes from n = 0,
at z = im/2.

To find the residue of f at this pole, put z = Z4(: ase™/? =i, ™ = —1,
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So Resix2f = coefficient of 1/¢ on RHS = in?/8.
The contributions along 72, 74 — 0, (R — 00) (exponentially fast).
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(odd integrand between symmetrical limits), and (substituting ¢ := e*)
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Combining,

Now
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(The fact that [ ~3f involves the answer I motivates the choice of the vertices
+R +im. One can with hindsight see this in the form of f, since (e“+™)? =
627ri'62u — e2u.>

By CRT: [, f = 2miRes irj2 f:
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