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as cosz/x is odd, sinx/x is even and the limits are symmetric.
By Cauchy’s Theorem: [ f = 0. Combining:
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Note. f has a simple pole at 0, of residue 1, which would contribute 27 if
included. The —im above comes from going ‘half-way round, the wrong way’.
Lemma. As 6 increases from 0 to 7/2, sin /6 decreases from 1 to 2/7.

Proof. Exercise.

Lemma (Jordan’s Lemma). If f is meromorphic (no singularities except
poles) in the upper half-plane, y = Imz > 0, and |f(z)| = 0 (|]z] = o0),
uniformly for § = arg z € [0, ], then for m > 0 and v the semi-circle |z| = R,
Imz >0,

/ e f(2)dz — 0 (R — 00).
y
Proof.

. 2
|| = | exp{im(R cos0+iRsinf)}| = exp{—mRsinf} < exp {—mRQ} (Lemma).
m

So Ve > 0, AN s.t. if |z| > N, |f(2)] < € in upper half-plane. So by ML,
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Note. We could use Jordan’s Lemma in
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(to avoid [5 = f(;s + f(sw_(s + i s)-
Ezxample.
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(Lecture 1: characteristic function of Cauchy density).

Proof. Take € > 0, 7 a semicircle in the upper half-plane, ¢ > 0, f(z) =
1/(m(1 + 2?)) (to use Jordan’s Lemma for "% /(m(1 + 2%))). The only singu-
larity inside v is at y = ¢, a simple pole.
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By CRT:
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f(z)eitzdz—>/ (1(:_562)(135—1—0 (Jordan’s Lemma).
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[{f(z)e”zdz = /71 f(z)e"*dz+
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This gives the result for ¢ > 0. For ¢t = 0, it is a arctan™
replace t by —t. //

integral. For ¢t < 0:

5. Rotation of the line of integration - Branch points.
Rotation: Use a sector as shown.
Branch points. Example: the Gamma function,

L(t) := /OOO o le " dr (t>0).



