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C(4) = f: 1/n* = */90.
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say. Since (1—{..})7' =1+{...} +{..}* + ..., the last factor on the RHS is
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neglecting terms beyond z*. So multiplying up the last two brackets on the
RHS, we get three terms in z*, each of which will contribute to the residue
(coefficient of 1/z), in view of the 2= factor. This gives
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Resg Cozzrz = coefficients of 1/z on RHS = %.7?4 (360 + o1 12) =..= —2—5.
As before:
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8. Expansion of a meromorphic function.
Ezxample.
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f(z) =cosec z — — = — — —.
z sinz =z

Simple pole at z = nmw, n # 0. For z = nw + (,
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no singularity, so no residue.
By the Squares Lemma (on cosec wz, on Cy): cosec z is bounded on the
squares I'y with vertices (N + 1)m(+1 £ ). Consider
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(w—z w(w — z)
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/F w(l/w dw‘ — O(1/N).O(1/N?).0(N) = O(1/N?) = 0.
So In(z) = 0 as N — oco. By CRT:

cw—1/w

In(2) =2mi ) _ Res cose

w(w — 2)

)

over the singularities inside ['y. For fixed z, z is inside ['y for large enough
N. By the Cover-Up rule:
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while proceeding as above (cosec w — 1/w)/(w(w — z)) has no singularity at
z=20. For n # 0,
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So
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We can cancel 27i/z. Then replace ZfL_Nm&O =SV by 2N

the 1/(nm) and —1/(nm) cancel, and
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We obtain

cosecz=i+2zz(_)=1+222—2zz.
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Similarly,
cot z=—+2z2) ——.
z = 22 —n’n?

ok
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In I11.9, Infinite products for sin, cos, tan (Website — not examinable), we
start with (i) and (ii), integrate, and obtain the infinite products for sin,
cos and tan. These give extensions to entire functions of the Fundamental
Theorem of Algebra, displaying a polynomial as a product of linear factors
vanishing at its roots. From these, we can again obtain ((2) = 72/6, ((4) =

74/90, and Wallis’s product for 7 (this time by Complex Analysis).



