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ζ(4) =
∞∑
n=1

1/n4 = π4/90.

Proof.
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say. Since (1−{...})−1 = 1+ {...}+ {...}2 + ..., the last factor on the RHS is
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neglecting terms beyond z4. So multiplying up the last two brackets on the
RHS, we get three terms in z4, each of which will contribute to the residue
(coefficient of 1/z), in view of the z−5 factor. This gives
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As before:
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1/π4 → 0 (N → ∞) : ζ(4) =
∞∑
1

1/n4 = π4/90. //

8. Expansion of a meromorphic function.
Example.

f(z) = cosec z − 1

z
=
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− 1

z
.

Simple pole at z = nπ, n ̸= 0. For z = nπ + ζ,
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Resnπf = (−1)n, n ̸= 0.

At n = 0,

f(z) =
z − sin z

z sin z
=

z −
(
z − z3

6
...
)

z
(
z − π3

6
...
) =

1
6
z3 + ...

z2
(
1− z2

6
...
) ∼ z

6
→ 0 (z → 0) :

no singularity, so no residue.
By the Squares Lemma (on cosec πz, on CN): cosec z is bounded on the

squares ΓN with vertices (N + 1
2
)π(±1± i). Consider

IN(z) :=
∫
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∣∣∣∣∣ = O(1).O(1/N2).O(N) = O(1/N) → 0 (N → ∞)

∣∣∣∣∣
∫
ΓN

1/w

w(w − z)
dw
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So IN(z) → 0 as N → ∞. By CRT:
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over the singularities inside ΓN . For fixed z, z is inside ΓN for large enough
N . By the Cover-Up rule:
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,

while proceeding as above (cosec w− 1/w)/(w(w− z)) has no singularity at
z = 0. For n ̸= 0,

Resnπ =
(−1)n

nπ(nπ − z)
=

(−1)n

(−z)

(
1

nπ
− 1

nπ − z

)
= −(−1)n

z

(
1

z − nπ
+

1

nπ

)
.

So
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We can cancel 2πi/z. Then replace
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We obtain
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Similarly,
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In III.9, Infinite products for sin, cos, tan (Website – not examinable), we
start with (i) and (ii), integrate, and obtain the infinite products for sin,
cos and tan. These give extensions to entire functions of the Fundamental
Theorem of Algebra, displaying a polynomial as a product of linear factors
vanishing at its roots. From these, we can again obtain ζ(2) = π2/6, ζ(4) =
π4/90, and Wallis’s product for π (this time by Complex Analysis).
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