m2pm3l4(11).tex Lecture 4. 17.1.2011.

Euler's Formula (L. Euler (1707-1783)).

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} \dots,$$

$$\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \dots,$$

$$\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots$$

Take $z = i\theta$, θ real:

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!}$$

= $(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots) + i(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots)$
= $\cos\theta + i\sin\theta$.

This is implicit in the Argand representation. Note. Take $\theta = \pi$; then

$$e^{i\pi} = -1$$

The extended complex plane C^* .

R is totally ordered, so there are two directions in which to "go off to infinity", right to $+\infty$, and left to $-\infty$. We write $\mathbf{R}^* := \mathbf{R} \cup \{+\infty\} \cup \{-\infty\}$. What about **C**?

On **R**, recall graphs with asymptotes, e.g. g(x) = 1/x or $g(x) = \tan(x)$. This suggests that, in some sense, ' $+\infty$ and $-\infty$ are the same place'.

Stereographic Projection (G.F. RIEMANN (1826-66) in 1851), PTOLEMY, c. 160 AD).

Draw a picture of the unit sphere ('Earth'), showing the following:

- Σ Unit sphere
- C Unit circle in Oxy ("Equator")
- N,S North and South poles
- GM "Greenwich Meridian"

Line NP cuts Oxy-plane in P'.

$$P \longrightarrow P'$$

is called *stereographic projection*.

P Northern Hemisphere	\longleftrightarrow	P' outside unit circle C
P Southern Hemisphere	\longleftrightarrow	P' inside unit circle C
P on equator	\longleftrightarrow	P' = P on unit circle
P South Pole S	\longleftrightarrow	P' origin 0
P North Pole N	\longleftrightarrow	P'?
1		11 1 1

Stereographic projection gives a 1-1 correspondence between the complex plane \mathbb{C} and $\Sigma \setminus \{N\}$. Call this the *punctured sphere*

 $\Sigma' := \Sigma \setminus \{N\}.$

We now complete Σ' to get Σ , by including the North Pole N. This corresponds (under stereographic projection) to completing **C** to get **C**^{*}:

$$\mathbf{C}^* := \mathbf{C} \cup \{\infty\},\$$

where ∞ , the "point at infinity in **C**", corresponds to "going off to infinity in all directions".

Note. 1. This is a special case of a general procedure, called *Alexandrov* (one-point) compactification.

2. See also the subject of *Projection Geometry* (Girard DESARGUES (1591-1661) in 1631) - the mathematics of perspective and computer graphics.

What is π ?

From now on $\cos x$ and $\sin x$ are *defined* by their power-series expansions. So we should define π in terms of these also:

 $\pi :=$ smallest positive root of sin,

equivalently,

 $\pi/2 :=$ smallest positive root of cos.

(This should be in all the books, but it isn't.) For background, see e.g. E. F. WHITTAKER & G.N. WATSON, *Modern Analysis*, 4th ed. (1927/1946), CUP, Appendix.