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Lecture 5. 18.1.2011.

De Moivre’s Theorem.

cosnθ+i sinnθ = einθ = (eiθ)n = (cosθ+i sin θ)n =
n∑

k=0

(
n

k

)
coskθin−ksinn−kθ.

Take real parts: writing c, s for cos θ, sin θ,

cosnθ = cn−
(
n

2

)
cn−2s2+

(
n

4

)
cn−4s4+. . . = cn−

(
n

2

)
cn−2(1−c2)+

(
n

4

)
cn−4(1−c2)2+. . .

So cosnθ is a polynomial of degree n in c = cos θ (Exam 2010, Q1).
Complements.

Draw a Venn diagram with two overlapping sets, showing their inter-
section and union. We only deal with subsets of a given fixed set, called
the universal set, Ω (the ‘frame in the Venn diagram’). In M2PM3 we take
Ω = C, unless we say otherwise (e.g., Ω = C∗).
Recall De Morgan’s Laws (Augustus De MORGAN (1806-1871), in 1870):

(A ∪B)c = Ac ∩Bc : Complement of union = Intersection of complements;
(A ∩B)c = Ac ∪Bc : Complements of intersection = Union of complements.

Similarly for arbitrary (e.g. infinite) unions and intersections.

2. Preliminaries from Real Analysis and Topology
1. Conditional and Absolute Convergence.
Recall:

∑∞
0 an converges means its partial sums sn :=

∑n
0 ak converge to a

limit.∑
an converges absolutely if

∑ |an| converges.
Absolute convergence =⇒ convergence; the converse is false (e.g.

∑∞
1 (−1)n/n

converges, but
∑∞

1 1/n diverges).
If
∑

an converges but not absolutely it is conditionally convergent.
Absolutely convergent series behave well under all operation – eg, rearrange-
ment of the order of the terms. Conditionally convergent series do not, and
must be handled with care.
2. Uniform Convergence.
Defn. A function f : R → R is continuous at x0 if

∀ϵ > 0∃δ > 0 s.t. ∀x with |x− x0| < δ, |f(x)− f(x0)| < ϵ.
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Defn. A function f : [a, b] → R is uniformly continuous on [a, b] if

∀ϵ > 0∃δ > 0 s.t. ∀x, y ∈ [a, b] with |x− y| < δ, |f(x)− f(y)| < ϵ.

(That is, if δ = δ(x0, ϵ) in the Definition above, infx0∈[a,b] δ(x0, ϵ) > 0 - in
general, this infimum will be 0).
Defn. fn : [a, b] → R converges (pointwise) to δ : [a, b] → R if

fn(x) → f(x) (n → ∞) ∀x ∈ [a, b].

Defn. fn : [a, b] → R converges uniformly to f : [a, b] → R if

∀ϵ > 0∃N s.t. ∀n ≥ N ∀x ∈ [a, b], |fn(x)− f(x)| < ϵ.

A series
∑

fn(x) converges (pointwise or uniformly) if its sequence of par-
tial sums

∑n
1 fk(x) converges (pointwise or uniformly).

We quote:
(i) Weierstrass M-test: if |fn(x)| ≤ Mn ∀x ∈ [a, b] and

∑
Mn < ∞, then∑

fn(x) converges uniformly.
(ii) If fn are continuous, and fn → f uniformly, then f is continuous: conti-
nuity is preserved under uniform convergence. (This does not hold in general
– see Problems 1).
3. Functions continuous on a closed interval.

If f : [a, b] → R is continuous:
1. f is bounded : M = sup[a,b] f(·) < ∞, m = inf [a,b] f(·) > −∞.
2. f attains its bounds : ∃x1, x2 ∈ [a, b] such that f(x1) = M , f(x2) = m.
3. Intermediate Value Theorem: f attains every value between its bounds:
if y ∈ [m,M ], ∃x ∈ [a, b] with f(x) = y.
4. Heine’s Theorem: f is uniformly continous (on [a, b]).
Note. This is false if the interval is not closed. E.g., if f(x) = 1/x on (0, 1]
(f is continuous but unbounded on (0, 1], although f is bounded on [ϵ, 1] for
each ϵ > 0).
4. Open and Closed Sets; Metric Spaces and Topological Spaces.

Recall that on R an interval I with endpoints a, b is open if it omits its
end-points, I = (a, b) = {x : a < x < b}, closed if it contains its end-points,
I = [a, b] = {x : a ≤ x ≤ b}. Similarly for rectangles in R2, cuboids in R3,
etc. What matters is the difference between openness and closedness. This
is very important, can be defined quite generally, and is the basis of General
Topology.
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