m2pm3l5(11).tex Lecture 5. 18.1.2011.

De Moivre's Theorem.

$$\cos n\theta + i\sin n\theta = e^{in\theta} = (e^{i\theta})^n = (\cos\theta + i\sin\theta)^n = \sum_{k=0}^n \binom{n}{k} \cos^k\theta i^{n-k} \sin^{n-k}\theta.$$

Take real parts: writing c, s for $\cos \theta, \sin \theta$,

$$\cos n\theta = c^n - \binom{n}{2}c^{n-2}s^2 + \binom{n}{4}c^{n-4}s^4 + \dots = c^n - \binom{n}{2}c^{n-2}(1-c^2) + \binom{n}{4}c^{n-4}(1-c^2)^2 + \dots$$

So $\cos n\theta$ is a polynomial of degree n in $c = \cos \theta$ (Exam 2010, Q1). Complements.

Draw a Venn diagram with two overlapping sets, showing their intersection and union. We only deal with subsets of a given fixed set, called the *universal set*, Ω (the 'frame in the Venn diagram'). In M2PM3 we take $\Omega = \mathbf{C}$, unless we say otherwise (e.g., $\Omega = \mathbf{C}^*$).

Recall De Morgan's Laws (Augustus De MORGAN (1806-1871), in 1870):

 $(A \cup B)^c = A^c \cap B^c$: Complement of union = Intersection of complements; $(A \cap B)^c = A^c \cup B^c$: Complements of intersection = Union of complements.

Similarly for arbitrary (e.g. infinite) unions and intersections.

2. Preliminaries from Real Analysis and Topology

1. Conditional and Absolute Convergence.

Recall: $\sum_{0}^{\infty} a_n$ converges means its partial sums $s_n := \sum_{0}^{n} a_k$ converge to a limit.

 $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

Absolute convergence \implies convergence; the converse is false (e.g. $\sum_{1}^{\infty} (-1)^n/n$ converges, but $\sum_{1}^{\infty} 1/n$ diverges).

If $\sum a_n$ converges but not absolutely it is *conditionally convergent*.

Absolutely convergent series behave well under all operation - eg, rearrangement of the order of the terms. Conditionally convergent series do not, and must be handled with care.

2. Uniform Convergence.

Defn. A function $f : \mathbf{R} \to \mathbf{R}$ is continuous at x_0 if

$$\forall \epsilon > 0 \exists \delta > 0 \text{ s.t. } \forall x \text{ with } |x - x_0| < \delta, \quad |f(x) - f(x_0)| < \epsilon.$$

Defn. A function $f:[a,b] \to \mathbf{R}$ is uniformly continuous on [a,b] if

 $\forall \epsilon > 0 \, \exists \delta > 0 \text{ s.t. } \forall x, y \in [a, b] \text{ with } |x - y| < \delta, \quad |f(x) - f(y)| < \epsilon.$

(That is, if $\delta = \delta(x_0, \epsilon)$ in the Definition above, $\inf_{x_0 \in [a,b]} \delta(x_0, \epsilon) > 0$ - in general, this infimum will be 0).

Defn. $f_n : [a, b] \to \mathbf{R}$ converges (pointwise) to $\delta : [a, b] \to \mathbf{R}$ if

 $f_n(x) \to f(x) \quad (n \to \infty) \quad \forall x \in [a, b].$

Defn. $f_n: [a, b] \to \mathbf{R}$ converges uniformly to $f: [a, b] \to \mathbf{R}$ if

$$\forall \epsilon > 0 \exists N \text{ s.t. } \forall n \ge N \forall x \in [a, b], \quad |f_n(x) - f(x)| < \epsilon.$$

A series $\sum f_n(x)$ converges (pointwise or uniformly) if its sequence of partial sums $\sum_{1}^{n} f_k(x)$ converges (pointwise or uniformly).

We quote:

(i) Weierstrass M-test: if $|f_n(x)| \leq M_n \ \forall x \in [a, b]$ and $\sum M_n < \infty$, then $\sum f_n(x)$ converges uniformly.

(ii) If f_n are continuous, and $f_n \to f$ uniformly, then f is continuous: continuity is preserved under uniform convergence. (This does not hold in general – see Problems 1).

3. Functions continuous on a closed interval. If $f : [a, b] \to \mathbf{R}$ is continuous:

1. f is bounded: $M = \sup_{[a,b]} f(\cdot) < \infty, m = \inf_{[a,b]} f(\cdot) > -\infty.$

- 2. f attains its bounds: $\exists x_1, x_2 \in [a, b]$ such that $f(x_1) = M$, $f(x_2) = m$.
- 3. Intermediate Value Theorem: f attains every value between its bounds: if $y \in [m, M]$, $\exists x \in [a, b]$ with f(x) = y.

4. Heine's Theorem: f is uniformly continous (on [a, b]).

Note. This is false if the interval is not closed. E.g., if f(x) = 1/x on (0, 1] (f is continuous but unbounded on (0, 1], although f is bounded on $[\epsilon, 1]$ for each $\epsilon > 0$).

4. Open and Closed Sets; Metric Spaces and Topological Spaces.

Recall that on **R** an interval I with endpoints a, b is open if it omits its end-points, $I = (a, b) = \{x : a < x < b\}$, closed if it contains its end-points, $I = [a, b] = \{x : a \le x \le b\}$. Similarly for rectangles in \mathbb{R}^2 , cuboids in \mathbb{R}^3 , etc. What matters is the difference between openness and closedness. This is very important, can be defined quite generally, and is the basis of General Topology.