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Lecture 7. 24.1.2011.

6. The Theorems of Bolzano &Weierstrass and Cantor. We quote (proofs
not examinable):

Theorem (Bolzano-Weierstrass). If S is an infinite bounded set in Rd

(or C) then S has at least one limit point.

Theorem (Cantor; Nested Sets Theorem). If Kn is a decreasing se-
quence of closed and bounded sets in Rd or C, i.e.

K1 ⊃ K2 ⊃ . . . ⊃ Kn ⊃ . . .

then their intersection ∩∞
n=1Kn is non-empty.

The proofs (see the Handout) use repeated bisection.
Note that the condition that the Kn be bounded is essential here. For

in R, the sets [n,∞) are decreasing and bounded, but their intersection is
empty. (One can think of their intersection as ‘the point at +∞’, but this
is not a real number, so not in R. It is in the extended real line R∗, which
unlike the real line is ‘compact’, in a sense to which we now turn.)

7. Compactness. We usually write: open sets as G (G for geöffnet =
open, German), closed sets as F (F for fermé = closed, French), G, F for the
classes of open sets and of closed sets.
Defn. A collection {Gα : Gα ∈ G, α ∈ A} (Gα open, A some index set) is an
open covering for S if S ⊂ ∪α∈AGα (“the Gα covers S”).

We quote that in Rd, or C, one can always reduce an (uncountably in-
finite) open covering to a finite or countably infinite subcovering (i.e., some
finite or countably infinite subfamily of the Gα still covers S). (This is be-
cause in R, each real is a limit of a sequence of rationals. One says that
the rationals (which are countable) are dense in the reals, and that the reals,
having a countable dense set, are separable. Similarly for Rd, C.)

For some sets S, one can always reduce to a finite subcovering.
Defn. A set S is compact if any open covering of S contains a finite subcov-
ering.

We usually write compact sets as K (K for kompakt=compact, German), K
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for the class of compact sets.

We quote: in any metric space (e.g. Rd or C):
(i) S compact implies S closed.
(ii) S compact implies S bounded.
Combining: in a metric space, S compact implies S closed and bounded.
The converse is harder, and needs restriction. We quote:

Theorem (Heine-Borel). In Euclidean space Rd, or C, S compact iff S
closed and bounded.
Examples.

1. Hilbert space ℓ2: ℓ2 := {x = (xn)
∞
1 : ∥x∥ =

√∑∞
n=1 |xn|2 < ∞}. This

is a metric space, under the normal Euclidean distance. The unit ball
B1 := {x : ∥x∥ ≤ 1} is closed and bounded. But B is not compact. For
example, the unit vectors δn = (δnm)

∞
m=1 (Kronecker delta), are all

√
2 apart

(Pythagoras’ Theorem). So no subsequence can converge. This says that B
is not ‘sequentially compact’, and (we quote) in a metric space sequential
compactness is the same as compactness. So B is not compact, as B is a
metric space. (So the Heine-Borel Theorem depends on Euclidean space be-
ing finite-dimensional).
2. The complex plane C is not compact.
First Proof.

We use the Argand representation, and work in R2. Then C is not
bounded (though it is closed), so C is not compact, by Heine-Borel.
Second Proof

We use stereographic projection and work in R3. Then C ↔ Σ′ (punc-
tured sphere) - bounded but not closed. SoC is not compact, by Heine-Borel.
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