m2pm3l9.tex Lecture 9. 27.1.2011.

Defn. A power series in $z \in \mathbf{C}$ is a series of the form $\sum_{n=0}^{\infty} a_n z^n$, $(a_n \in \mathbf{C})$. The series may converge for: all z (e.g. the exponential series $e^z = \sum_0^{\infty} z^n/n!$); some but not all z (e.g. the geometric series 1/(1-z)); only for z = 0, to a_0 (e.g. $\sum_0^{\infty} n! z^n$) – a trivial case, omitted. We write $\rho := \limsup |a_n|^{1/n}$. By the Root Test for $\sum a_n z^n$: If $\rho |z| < 1$, i.e. $|z| < 1/\rho$, $\sum a_n z^n$ converges (absolutely). If $\rho |z| > 1$, i.e. $|z| > 1/\rho$, $\sum a_n z^n$ diverges.

If $\rho|z| = 1$, i.e. $|z| = 1/\rho$, the test is inconclusive.

Defn. Write $R := 1/\rho = 1/\limsup |a_n|^{1/n}$: $\sum a_n z^n$ is absolutely convergent for |z| < R, and divergent for |z| > R. We call R the Radius of Convergence (R of C) of $\sum a_n z^n$, |z| = R its Circle of Convergence. Similarly for $\sum a_n (z - z_0)^n$, with base-point z_0 .

So a power series: converges (absolutely) *inside* its circle of convergence; diverges *outside* its circle of convergence; may do either *on* its circle of convergence. $\sum a_n z^n$ converges (absolutely and) uniformly in $|z| \leq R_1, R_1 < R$: A power series converges (absolutely and) uniformly in *closed discs inside* the circle of convergence.

10. Termwise differentiation and integration.

If $\sum u_n(x)$ is a convergent series of functions and $\int \{\sum u_n(x) dx\} = \sum [\int u_n(x) dx]$, we say $\sum u_n(x)$ can be *integrated term-by-term*, or *termwise*. If $\{\sum u_n(x)\}' = \sum u'_n(x)$, we say $\sum a_n(x)$ can be *differentiated termwise*. We quote: (I) If $\sum u_n(x)$ converges *uniformly*, it can be integrated termwise.

(D) If $\sum u'_n(x)$ converges uniformly, then $\sum u_n(x)$ can be differentiated termwise. For a power series $\sum a_n z^n$, we get $\sum n a_n z^{n-1}$ by differentiating termwise; similarly we get $\sum a_n z^{n+1}/(n+1)$ by integrating termwise. All three power series have the same R of C (the shift of suffix from n to $n \pm 1$ makes no difference, and neither do the factors of n or n+1, as $n^{1/n} = e^{(\log n)/n} \to e^0 = 1$). Combining:

Theorem. A power series can be differentiated (or integrated) termwise inside its circle of convergence. We can do this arbitrarily often ('infinitely often'):

Theorem. A power series can be differentiated (termwise) *infinitely often* inside its circle of convergence.

We shall see later (Cauchy-Taylor Theorem, II.7) that the functions we study in Chapter II - *holomorphic functions*, 'differentiable once', are exactly those representable by power series. So:

f differentiable once \Leftrightarrow f differentiable infinitely often.

This is a total contrast to Real Analysis.

Addendum to I.1: Complex numbers (Lecture 5).

Complex nth roots of unity. For k integer, $e^{2\pi i k} = 1$. For n integer, take nth roots: $e^{2\pi i k/n} = 1$. These complex values are distinct for $k = 0, 1, \ldots, n-1$, and are called the (*complex*) nth roots of unity. They are on the unit circle, equally spaced at the vertices of a regular n-gon (draw a diagram to illustrate this, for n = 2, 3, 4, 5 and 6).

If ω is an *n*th root of unity, it satisfies the equation $\omega^n = 1$. Now $\omega = 1$ is one root. From the identity $\omega^n - 1 = (\omega - 1)(\omega^{n-1} + \omega^{n-2} + \cdots + \omega + 1)$, the other n - 1 *n*th roots of unity satisfy

$$\omega^{n-1} + \omega^{n-2} + \dots + \omega + 1 = 0.$$

If z is complex, n = 1, 2, 3, ..., and $z^{1/n}$ is one nth root of z, then so are $z^{1/n}\omega_n$, where ω_n runs through the n nth roots of unity. These different values (or branches) are the same when z = 0, which is accordingly called a *branch-point* of $z^{1/n}$. There are n nth roots: nth roots are non-unique. E.g., for n = 2 there are two square roots: even in Real Analysis, we get a sign ambiguity when we take square roots.