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Lecture 9. 27.1.2011.

Defn. A power series in z ∈ C is a series of the form
∑∞

n=0 anz
n, (an ∈ C).

The series may converge for:
all z (e.g. the exponential series ez =

∑∞
0 zn/n!);

some but not all z (e.g. the geometric series 1/(1− z));
only for z = 0, to a0 (e.g.

∑∞
0 n!zn) – a trivial case, omitted.

We write ρ := lim sup |an|1/n. By the Root Test for
∑

anz
n:

If ρ|z| < 1, i.e. |z| < 1/ρ,
∑

anz
n converges (absolutely).

If ρ|z| > 1, i.e. |z| > 1/ρ,
∑

anz
n diverges.

If ρ|z| = 1, i.e. |z| = 1/ρ, the test is inconclusive.

Defn. Write R := 1/ρ = 1/lim sup |an|1/n:
∑

anz
n is absolutely convergent

for |z| < R, and divergent for |z| > R. We call R the Radius of Convergence
(R of C) of

∑
anz

n, |z| = R its Circle of Convergence.
Similarly for

∑
an(z − z0)

n, with base-point z0.

So a power series: converges (absolutely) inside its circle of convergence;
diverges outside its circle of convergence; may do either on its circle of con-
vergence.

∑
anz

n converges (absolutely and) uniformly in |z| ≤ R1, R1 < R:
A power series converges (absolutely and) uniformly in closed discs inside
the circle of convergence.
10. Termwise differentiation and integration.

If
∑

un(x) is a convergent series of functions and
∫
{∑un(x) dx} =

∑
[
∫
un(x) dx],

we say
∑

un(x) can be integrated term-by-term, or termwise. If {∑un(x)}
′
=∑

u
′
n(x), we say

∑
an(x) can be differentiated termwise. We quote:

(I) If
∑

un(x) converges uniformly, it can be integrated termwise.
(D) If

∑
u

′
n(x) converges uniformly, then

∑
un(x) can be differentiated termwise.

For a power series
∑

anz
n, we get

∑
nanz

n−1 by differentiating termwise;
similarly we get

∑
anz

n+1/(n + 1) by integrating termwise. All three power
series have the same R of C (the shift of suffix from n to n± 1 makes no dif-
ference, and neither do the factors of n or n+1, as n1/n = e(log n)/n → e0 = 1).
Combining:

Theorem. A power series can be differentiated (or integrated) termwise in-
side its circle of convergence.
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We can do this arbitrarily often (‘infinitely often’):

Theorem. A power series can be differentiated (termwise) infinitely often
inside its circle of convergence.

We shall see later (Cauchy-Taylor Theorem, II.7) that the functions we
study in Chapter II - holomorphic functions, ‘differentiable once’, are exactly
those representable by power series. So:

f differentiable once ⇔ f differentiable infinitely often.

This is a total contrast to Real Analysis.

Addendum to I.1: Complex numbers (Lecture 5).
Complex nth roots of unity. For k integer, e2πik = 1. For n integer, take nth
roots: e2πik/n = 1. These complex values are distinct for k = 0, 1, . . . , n− 1,
and are called the (complex) nth roots of unity. They are on the unit circle,
equally spaced at the vertices of a regular n-gon (draw a diagram to illustrate
this, for n = 2, 3, 4, 5 and 6).

If ω is an nth root of unity, it satisfies the equation ωn = 1. Now ω = 1
is one root. From the identity ωn − 1 = (ω − 1)(ωn−1 + ωn−2 + · · ·+ ω + 1),
the other n− 1 nth roots of unity satisfy

ωn−1 + ωn−2 + · · ·+ ω + 1 = 0.

If z is complex, n = 1, 2, 3, . . ., and z1/n is one nth root of z, then so
are z1/nωn, where ωn runs through the n nth roots of unity. These different
values (or branches) are the same when z = 0, which is accordingly called a
branch-point of z1/n. There are n nth roots: nth roots are non-unique. E.g.,
for n = 2 there are two square roots: even in Real Analysis, we get a sign
ambiguity when we take square roots.
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