M2PM3 PROBLEMS 1. 11.1.2011

Q1. Show from first principles that $\cos(\pi/3) = 1/2$ (and so $\sin(\pi/3) = \sqrt{3}/2$).

Q2. (i) Show that a real number x is rational iff its decimal expansion terminates or recurs.

(ii) What can be said about the decimal expansion of m/n (cancelled down to its lowest terms)?

(iii) What about binary expansions? ternary? etc.

Q3. For
$$f(x) := \exp(-1/x^2)$$
,

(i) Show (by induction or otherwise) that

$$f^{(n)}(x) = P_n(1/x) \exp(-1/x^2)$$

with $P^{(n)}$ a polynomial.

(ii) Deduce that $f^{(n)}(0) = 0$ for all n.

(iii) Deduce that the Taylor expansion of f about 0 converges for all x, but to 0 and not to f(x).

Q4. Spherical polar coordinates. In spherical polar coordinates (r, θ, ϕ) , parametrize the unit sphere r=1 by (θ,ϕ) (longitude, colatitude).

Where does this coordinate representation fail to be unique, and why?

Q5. For $f_n(x):=nx/(1+n^2x^2)$ $(x\in[0,\infty),\ n=1,2,\ldots)$: (i) Show that $f_n(x)\to 0$ as $n\to\infty$, for all $x\geq 0$, i.e. $f_n\to 0$ pointwise on $[0,\infty)$.

(ii) Show that $\sup_{x\in[0,\infty)} f_n(x)$ does not tend to 0.

(iii) Deduce that f_n does not tend to 0 uniformly on $[0, \infty)$.

NHB