m2pm3prob3.tex

M2PM3 PROBLEMS 3. 25.1.2011

Q1. Recall from lectures that (from de Moivre's theorem) $\cos n\theta$ is a polynomial of degree n in $\cos \theta$:

 $\cos n\theta = T_n(\cos \theta).$

Here T_n is called the *n*th *Tchebycheff polynomial* of the *first kind*. Show that also

$$\sin n\theta = U_{n-1}(\cos\theta)\sin\theta,$$

where U_{n-1} is a polynomial of degree n-1 – a Tchebycheff polynomial of the second kind.

Q2. Show that T_n has leading coefficient 2^{n-1} .

Q3. Find T_3, T_4, T_5 .

Q4. Show that, writing c, s, t for $\cos \theta$, $\sin \theta$, $\tan \theta$, $\tan n\theta$ is a rational function (ratio of polynomials) in t.

Q5. Show that the roots of the polynomial equation

$$7 - \binom{7}{3}t^2 + \binom{7}{5}t^4 - t^6 = 0$$

are $\tan \pi/7$, $\tan 2\pi/7$, ..., $\tan 6\pi/7$ (2010 Exam, Q1(ii)).

NHB