M2PM3 SOLUTIONS 2. 25.1.2011

Q1. (i) At the origin r = 0, the argument 6 is not defined uniquely — it can be
anywhere in [0, 27].

(ii) In spherical polars (r, 8, ¢), r is distance from the origin, and the angles are
latitude and longitude (actually, colatitude and longitude). At the North Pole,
longitude is not uniquely defined — any way you look, you are facing South.
Note. 1. This is connected with the special role of the North Pole in stereo-
graphic projections.

2. Near the North Pole, the Earth’s surface is approximately flat, and one can
use plane polar coordinates as local coordinates. Then non-uniqueness in (ii)
reduces to non-uniqueness in (i).

Q2. (i) Put z = ay:
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If a = b: let b — a in the above. The integral — 7/(a%.2a) = 7/(2a%). So
the answer holds for a = b also. (We shall return to this example later as an
application of Cauchy’s Residue Theorem. We note its real-variable proof now.)
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F(1+t*) =1, F(t)=1/(1+t%).
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by (i) (the second integral is zero: odd integrand, symmetric limits. The first
integral is twice foooz even integrand, symmetric limits.

Note. 1. Again, we will return to this later in a complex setting, but note this
real-variable proof now.

2. In probabilistic language, this finds the characteristic function of the sym-
metric exponential probability density %e"g”' as 1/(1+t2).
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