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9. Dirichlet’s Hyperbola Identity (DHI)

Theorem (DHI). If 1 < y < x,∑
n≤x

(a ∗ b)(n) =
∑
j≤y

a(j)B(x/j) +
∑

k≤x/y

b(k)A(x/k)− A(y)B(x/y).

Proof. LHS = S :=
∑

jk≤xajbk, as in II.3. Write S1 for the sum of all such
terms with j ≤ y, S2 that of all terms with k ≤ x/y. As in II.3,

S1 =
∑

jk≤x,j≤y
ajbk =

∑
j≤y

aj
∑

k≤x/j
bk =

∑
j≤y

ajB(x/k),

the first sum on RHS, and similarly

S2 =
∑

jk≤x,k≤x/y
ajbk =

∑
k≤x/y

bk
∑

j≤x/k
aj =

∑
k≤x/y

bkA(x/k),

the second sum on RHS. Now S1 + S2 counts all terms, but counts twice
those with both j ≤ y and k ≤ x/y. The sum of these terms is A(y)B(x/y).
So subtracting this ‘corrects the count’, and gives the result. //

Theorem. If dn is the number of divisors of n,∑
n≤x

dn = x log x+ (2γ − 1)x+O(
√
x).

Proof. Take an = bn = 1 (so (a ∗ b)n = dn, by (i)), y =
√
x: as A(x) =

B(x) = [x], Dirichlet’s Hyperbola Identity gives∑
n≤x

dn =
∑
j≤

√
x

[x/j] +
∑

k≤
√
x

[x/k]− [
√
x][

√
x] = 2

∑
j≤

√
x

[x/j]− [
√
x][

√
x].

In each [.] on RHS, write [.] = .− {.}. Each fractional part {.} ∈ [0, 1), so∑
n≤x

dn = 2
∑
j≤

√
x

x/j +O(
√
x)− x+O(

√
x) = 2x

∑
j≤

√
x

1/j − x+O(
√
x),

as (
√
x+O(1))2 = x+O(

√
x). But as in L3, I.4,∑

j≤
√
x
1/j = log

√
x+ γ +O(1/

√
x) =

1

2
log x+ γ +O(1/

√
x).

So∑
n≤x

dn = 2x(log
√
x+γ+O(1/

√
x))−x+O(

√
x) = x log x+(2γ−1)x+O(

√
x). //
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III. THE PRIME NUMBER THEOREM AND ITS RELATIVES

§1. THE PRIME NUMBER THEOREM (PNT)
PNT states that

π(x) :=
∑

p≤x
1
∑

li(x) :=
∫ x

2
dt/ log t ∼ x/ log x (x → ∞) (PNT )

This was conjectured on numerical grounds by GAUSS (c. 1799; letter of
1848) and A. M. LEGENDRE (1752-1833; in 1798, Essai sur la Théorie des
Nombres).

In 1737 L. EULER (1707-1783) found his Euler product, linking the
primes to

∑∞
n=11/n

σ for real σ (later the Riemann zeta function).
In 1850-51, P. L. CHEBYSHEV (= TCHEBYSHEV, etc., 1821-1894)

made two great strides (III.2):
(i) π(x) ≍ x/ log x, i.e. C1x/ log x ≤ π(x) ≤ C2x/ log x for some 0 < C1 ≤
C2 < ∞ and all x ≥ X;
(ii)

lim inf π(x)/
x

log x
≤ 1 ≤ lim sup π(x)/

x

log x

– so if the limit exists (which we shall prove!), it must be 1.
In 1859 B. RIEMANN (1626-66) studied

ζ(s) :=
∑∞

n=1
1/ns (s ∈ C)

using Complex Analysis (M2PM3), then still fairly new, developed by A. L.
CAUCHY (1789-1857), 1825-29. He showed the critical relevance of the zeros
of ζ(s) to the distribution of primes. We shall show that:
(i) ζ can be continued analytically from Re s > 1 to the whole complex plane
C, where it is holomorphic except for a simple pole at 1 of residue 1 (III.3);
(ii) The only zeros of ζ outside the critical strip

0 < σ = Re s < 1

are the so-called trivial zeros −2,−4, . . . ,−2n, . . . (trivial in that they follow
from the functional equation for ζ – see III.3);
(iii) PNT is closely linked to non-vanishing of ζ on the 1-line (III.4):

ζ(1 + it) ̸= 0.

Indeed, PNT is equivalent to this (see III.10.4 for this and other such equiv-
alences).
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