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The Riemann Hypothesis (RH) of 1859 is that the only zeros of ζ in the
critical strip are on the critical line

σ =
1

2
. (RH)

RH is still open, and is the most famous and important open question in
Mathematics. Its resolution would have vast consequences for prime-number
theory (especially error terms in PNT – see e.g. J Ch. 5). It is so hard that
proving theorems conditional on RH (i.e., assuming it is true) is respectable
in Analytic Number Theory.

PNT was proved independently in 1896 by J. HADAMARD (1865-1963,
French) and Ch. de la Vallée Poussin (1866-1962, Belgian). Both used Com-
plex Analysis and ζ.

Since counting primes relates to N (⊂ Z ⊂ Q ⊂ R ⊂ C), it seemed
strange and unaesthetic to use complex methods. Great efforts were make
to provide an elementary proof, over half a century.

Elementary proofs of PNT were found in 1948 by Paul ERDÖS (1913-
1996, Hungarian) and Atle SELBERG (1917-2009, Norwegian). There is a
full account by J. Spencer and R. Graham in The Mathematical Intelligencer,
31.3 (2009), 18-23. Erdös gave an elementary proof of a result of Chebyshev
(proof of Bertand’s postulate: Problems 8). Selberg told him the day after
seeing it that he could use it to complete an elementary proof of PNT. Erdös
proposed collaboration but Selberg declined; their papers were published sep-
arately in 1949.

Proofs of ANT by complex methods are in all the books on ANT, includ-
ing J Ch. 3, which we follow. Elementary proofs of PNT are harder; see e.g.
HW Ch. XXII (22.14-16), J Ch. 6, A Ch. 4, R Ch. 13.

Error estimates in PNT are very important. Naturally, complex methods
give better error estimates than elementary ones. Error estimates depend
on zero-free regions of ζ (to the left of the 1-line, in the critical strip) – the
bigger, the better; see III.10.2.

§2. CHEBYSHEV’S THEOREMS

Defn. (CHEBYSHEV, 1850). θ(x) :=
∑

p≤x log p.
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So if p1, . . . , pn are the primes ≤ x, θ(x) = log p1+. . .+log pn = log(p1 . . . pn).

Propn. θ(x) ≤ π(x) log x.

Proof. Above: n = π(x) and each log pj ≤ log x. //

By Abel summation,

θ(x) =
∑

n≤x
IP (n) log n = π(x) log x−

∫ x

2

π(y)

t
dt. (θ − π)

Conversely, π can be expressed in terms of θ. As θ(x) :=
∑

n≤xbn, where
bn := log n if n is prime, 0 otherwise, and b1 = 0, Abel summation gives

π(x) =
θ(x)

log x
+

∫ x

2

θ(t)

tlog2t
dt (x ≥ 2) (π − θ)

Write

li(x) :=
∫ x

2

dt

log t

for the logarithmic integral (li(x) := 0 for x ≤ 2). Then by Problems 1,

li(x) ∼ x/ log x (x → ∞),

and it turns out that

π(x) ∼ li(x) (x → ∞) (PNT )

is a more accurate form of PNT than π(x) ∼ x/ log x.

Theorem 1 (Chebyshev). (i) If c0 ≤ θ(x) ≤ C0x (x ≥ 2), then for α :=
2/ log 2,

co(li(x) + α) ≤ π(x) ≤ C0(li(x) + α) (x ≥ 2).

(ii) If ϵ > 0 and cx ≤ θ(x) ≤ Cx (x ≥ x0), then there exists x1 such that

(c− ϵ)li(x) ≤ π(x) ≤ (C + ϵ)li(x) (x ≥ x1).

Proof. As in Problems 1: integrating by parts,

li(x) :=
∫ x

2

dt

log t
=

x

log x
− α+

∫ x

2

dt

log2t
.

Then (π − θ) gives (i). For (ii), split
∫ x
2 in (π − θ) into

∫ x0
2 +

∫ x
x0

and use the
upper bound given (li(x) → ∞, so it ’swallows constants’). Similarly for the
lower bound. //
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