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4. ζ(1 + it) ̸= 0.

Lemma. 3 + 4 cos θ + cos 2θ ≥ 0.

Proof. 3 + 4 cos θ + cos 2θ = 2 + 4 cos θ + 2cos2θ = 2(1 + cos θ)2. //

Prop. If all an ≥ 0 and the Dirichlet series f(s) :=
∑∞

1 an/n
s converges for

Re s = σ > σ0, then

3f(σ) + 4Ref(σ + it) +Ref(σ + 2it) ≥ 0 (σ > σ0).

Proof.

3f(σ) + 4Ref(σ + it) +Ref(σ + 2it) =
∞∑
1

an
nσ

(3 + 4n−it + n−2it).

If θn := t log n, Re(3 + 4n−it + n−2it = 3 + 4 cos θn + cos 2θn ≥ 0. //

Corollary. For σ > 1 and all t,

H(σ) := ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1.

Proof. By II.6, log ζ(s) has a Dirichlet series with non-negative coefficients,
log ζ(s) = f(s) =

∑∞
1 an/n

s for an ≥ 0. By the Proposition, 3f(σ) +
4Ref(σ + it) + Ref(σ + 2it) ≥ 0. So (log z = log(reiθ) = log r + iθ, so
Re log z = log r = log |z|)

3 log ζ(θ) + 4 log |ζ(θ + it)|+ log |ζ(θ + 2it)| ≥ 0.

Exponentiating gives the result. //

Theorem. ζ(1 + it) ̸= 0 for t ̸= 0.

Proof (by contradiction). If not, ζ(1 + it) = 0 for some t ̸= 0. Then differen-
tiating from first principles,

ζ(σ + it)− ζ(1 + it)

(σ + it)− (1 + it)
=

ζ(σ + it)

σ − 1
→ ζ ′(1 + it) (σ ↓ 1),

1



as ζ is holomorphic at 1 + it. In the Corollary,

H(σ) = [(σ − 1)ζ(σ)]3
(
|ζ(σ + it)|

σ − 1

)4

[(σ − 1)|ζ(σ + 2it)|] .

Now (σ − 1)ζ(θ) → 1 (σ ↓ 1) (ζ has a simple pole of residue 1 at 1). So
[...]3 → 1; (...)4 → (ζ ′(1 + it))4 by above; |ζ(σ + 2it)| → ζ(1 + 2it). Combin-
ing, H(σ) → 0 as σ → 1, contradicting the Corollary above. //

Note. 1. The critical term in the proof above is the factor σ − 1 in the last
[...] (available because of the ”3, 4, 1” coefficients in the Lemma (see below).
2. ζ(1 + it) ̸= 0 is essentially equivalent to the PNT, below.

Recall: from the Euler product, ζ ̸= 0 to the right of the 1-line; by the
Theorem, ζ ̸= 0 on the 1-line. We now extend the zero-free region of ζ to
the left of the 1-line and into the critical strip of 0 ≤ σ ≤ 1. It suffices to
consider t > 0, as |ζ(σ − it)| = |ζ(σ + it)| (since n−s = e−it logn/nσ).

Theorem. For 0 < a < b, ∃δ > 0 such that ζ(σ + it) ̸= 0 in 1 − δ ≤ σ ≤
1, a ≤ t ≤ b (a rectangle inside the critical strip).

Proof. If not, for each n there exists some sn = σn + itn with

1− 1/n ≤ σn ≤ 1, a ≤ tn ≤ b, ζ(sn) = 0.

As tn is an infinite sequence in [a, b], which is compact, it has a convergent
subsequence tnk

(Bolzano-Weierstrass Th.), going to t0, say. Then σn → 1,
so snk

→ 1 + it0. So ζ(snk
) → ζ(1 + it0) by the continuity of ζ, and this is

non-zero by the Theorem above. But each ζ(sn) = 0, so ζ(snk
) = 0 → 0, a

contradiction. //

Note. 1. The method of proof above, resting on the Lemma, is due to
Hadamard in his original proof of PNT in 1896. It is clear and efficient, but
seems unmotivated (or like a ‘trick’). For an approach which both seems
more natural and is more general (non-vanishing of Dirichlet L-series, rather
than just the zeta function), see Newman [N], VI: A ”natural” proof of the
non-vanishing of L-series.
2. ζ(1 + it) ̸= 0 is exactly what is needed to apply the most important
Tauberian theorem, Wiener’s Tauberian theorem; see III.10.3.
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