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5. PERRON’S FORMULA (Oskar Perron (1880-1975) in 1908).
As before, f(s) :=

∑∞
1 an/n

s, A(x) :=
∑

n≤x an.

Write
∫ c+iT
c−iT for a line integral (M2PM3, II.9, L15) along the line σ =

c,−T ≤ t ≤ T . If both
∫ c+iT
c and

∫ c
c−iT have limits as t → ∞, then so does∫ c+iT

c−iT and we write the limit as
∫ c+i∞
c−i∞ .

Write E(x) := 1 (x ≥ 1), 0 (x < 1) – the unit step function or Heaviside
function (probability distribution function of the constant 1).

Proposition 1. For x > 0, c > 0,

1

2πi

∫ c+i∞

c−i∞

xs

s2
dx = E(x) log x.

Proof. Choose R > c, and write C : C(0, R) for the circle centre 0, radius R.
I(C1 ∪ LR) :=

1
2πi

∫
C1∪LR

xsds/s2. Write λ = log x. Then

xs

s2
=

eλs

s2
=

1

s2

(
1 + λs+

1

2
λ2s2 + ...

)
.

This function of s is holomorphic inside the contour LR ∪ C1, except for a
double pole at s = 0, of residue λ. As |xs| = xσ, and x > 1, on C1 we have
|xs| ≤ xc, so |xs/s2| ≤ xc/R2. So by the ML Inequality (M2PM3, II.9, L16),

|I(C1)| :=
∣∣∣∣ 1

2πi

∫
C1

xs

s2

∣∣∣∣ ≤ 1

2π
· x

c

R2
· 2πR = xc/R → 0 (R → ∞).

By Cauchy’s Residue Theorem (M2PM3, II.11, L25),
I(C1 ∪ LR) = λ, so I(LR) → λ = log x as R → ∞.
This is the statement for x ≥ 1.

For 0 < x < 1, instead integrate around LR ∪ C2. Now there are no
singularities inside the contour, so by CRT I(C2 ∪ LR) = 0. Now xσ ↓ in x,
so |xs| ≤ xc for s ∈ C2. As before, this gives I(C2) → 0, so I(LR) → 0. The
same proof, using 1

s(s−1)
= 1

s−1
− 1

s
, gives

Proposition 2. For x > 0, c > 1,

1

2πi

∫ c+i∞

c−i∞

xs

s(s− 1)
ds = (x− 1)E(x).

1



Theorem 1 (PERRON’S FORMULA). Suppose that f(s) :=
∑∞

1 an/n
s

converges absolutely for Re(s) > 1, (i.e σa ≤ 1 in II.1), and let A(x) :=∑
n≤x an. Then for c > 1, x > 1,

1

2πi

∫ c+i∞

c−i∞

xs−1

s(s− 1)
f(s)ds =

∑
n≤x

an

(
1

n
− 1

x

)
=

∫ x

1

A(y)

ys
dy.

Proof. Write xsf(s) = G(s) + H(s), G(s) :=
∑

n≤x an(x/n)
s, H(s) :=∑

n>x an(x/n)
s,

1

2πi

∫ c+i∞

c−i∞

G(s)

s(s− 1)
ds =

1

2πi

∫ c+i∞

c−i∞

∑
n≤x

an
(x/n)s

s(s− 1)
ds

=
∑
n≤x

an ·
1

2πi

∫ c+i∞

c−i∞

(x/n)s

s(s− 1)
ds =

∑
n≤x

an · (
x

n
− 1),

by Proposition 2.
Write M :=

∑
n>x |an|(x/n)c. Note M < ∞ by absolute convergence in

Re(s) > 1, as c > 1 . For Re(s) ≥ c, as n > x, |(x/n)s| ≤ (x/n)c, so
|H(s)| ≤ M . As H is holomorphic, Cauchy’s Theorem gives∫

C2∪LR

H(s)

s(s− 1)
ds = 0.

As before,
∫
C2

→ 0 as R → ∞. So
∫
LR

→ 0 also:

1

2πi

∫ c+i∞

c−i∞

H(s)

s(s− 1)
ds = 0.

The first statement follows, dividing both sides by x. For the second state-
ment, use Abel Summation (I.3 Cor(ii)) for f(y) = 1/y, so f ′(y) = −1/y2. //

Theorem 2. If (i) f(s) :=
∑∞

1 an/n
s is absolutely convergent for Re(s) > 1;

(ii)

f(s) =
α

s− 1
+ α0 + (s− 1)h(s),

with h is holomorphic at s = 1 (so if α ̸= 0, f has a simple pole at 1 of
residue α);

(iii) for t0 ≥ 1, |f(σ±it)| ≤ P (t) when σ ≥ 1 and t ≥ t0, with
∫∞
1

P (t)
t2

dt < ∞
– then ∫ ∞

1

A(x)− αx

x2
dx converges to α0 − α.
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