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To prove (*):
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By the Lemma, my(z) ~ xloglogx/log x, proving the case k = 2. //

As each n has at least one prime factor, it is better to work with k& + 1
rather than k. Writing

A :=loglogx
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(so A = 00 as & — oo — though extremely slowly):
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(k=0,1,2,...) (A, 2 — 0).

Now {e™*N\*/k! : k= 0,1,2,...} forms the Poisson distribution P(\) of Prob-
ability Theory, with parameter A (mean A, variance A). So:

Theorem (Landau). The proportion of primes < x with k+1 distinct prime
factors is asymptotically Poisson distributed with parameter A\ := loglog x.

The Poisson distribution is ”"the signature of randomness”, in the discrete
setting (as here). So this suggests that, in some sense, the primes are ran-
domly distributed (hence ‘Primes play a game of chance’ — see 111.10.1 below).
This is very surprising: in the ordinary sense, nothing could be less random,
or more deterministic, or ”God-given”, than the primes.

Recall the prime divisor functions of 11.8: w(n) is the number of distinct
prime divisors of n, (n) is the number of prime divisors of n counted with
multiplicity. It turns out that, as in I1.8, w and  behave similarly here.
So we may rephrase Landau’s theorem above as saying that both propor-
tions w(n)/n, (n)/n are asymptotically Poisson distributed with parameter
A :=loglogn (recall that loglog played a key role in I1.8 also). Using X ~ F
as the usual probabilistic shorthand for ”the random variable X has the dis-
tribution (function) F”, we have

Theorem (Landau’s Poisson PNT, 1900).
w(n)/n ~ P(loglogn), Q(n)/n ~ P(loglogn).

With some loss of information (the constants Cy,Cy and the error terms
O(z/log x), we may summarise the Theorem of 1.8 for comparison. Using
~ now (with a number after it, not a distribution) to denote ”is asymptotic
to”, one has

Theorem (Hardy and Ramanujan, 1917).

w(n)/n ~ loglogn, Q(n) ~ loglogn.



