m3pm16l4.tex Lecture 4. 24.1.2012

§5. INFINITE PRODUCTS

For a formal infinite product $\prod_{n=1}^{\infty} u_n$, write

$$p_n := \prod_{k=1}^n u_k$$

for the *n*th partial product.

Defn. (i) If no factor u_n is 0, we say $\prod_1^{\infty} u_n$ converges to $p \neq 0$ if the sequence p_n converges to $p \neq 0$.

(ii) If finitely many u_n are 0, say $u_n \neq 0$ for n > N,

$$\prod_{1}^{\infty} u_n := u_1 \dots u_N \prod_{N+1}^{\infty} u_n$$

(convergent or divergent as in (i)).

(iii) If infinitely many $u_n = 0$, say \prod_{1}^{∞} diverges to 0.

(iv) $\prod_{1}^{\infty} u_n$ diverges if it does not converge as in (i) or (ii).

Cauchy criterion for products. As for sums: $\prod_{1}^{\infty} u_n$ converges iff

$$\forall \epsilon > 0 \exists N \text{ s.t. } \forall n \ge N \forall p \ge 0, |u_{n+1} \dots u_{n+p} - 1| < \epsilon.$$

Theorem. If each $a_n > 0$, $\prod (1 + a_n)$ converges iff $\sum a_n$ converges.

Proof. Write $s_n := a_1 + \ldots + a_n$, $p_n := (1 + a_1) \ldots (1 + a_n)$. Multiply out:

$$p_n = 1 + a_1 + \ldots + a_n + a_1 a_2 + \ldots > 1 + a_1 + \ldots + a_n = 1 + s_n > s_n : \qquad p_n > s_n.$$

But $1 + x \leq e^x$ for $x \geq 0$, so taking $x = a_k$ and multiplying, $p_n \leq e^{s_n}$. Combining, p_n bounded iff s_n bounded; each is increasing (as $a_n > 0$), so (as sequences) they converge or diverge together. As $p_n \geq 1$, if $p_n \to p$, then $p \geq 1$, so the sequence p_n cannot converge to 0. //

Defn. $\prod(1 + a_n)$ converges absolutely if $\prod(1 + |a_n|)$ converges. As with sequences: absolute convergence implies convergence.

§6. THE RIEMANN-LEBESGUE LEMMA.

For $\phi : \mathbf{R} \to \mathbf{C}$ integrable, meaning

$$\int_{-\infty}^{\infty} |\phi(t)| dt < \infty,$$

define the Fourier transform $\hat{\phi}$ by

$$\hat{\phi}(\lambda) := \int_{-\infty}^{\infty} e^{i\lambda t} \phi(t) dt.$$

This exists, as $|e^{i\lambda t}\phi(t)| \le |\phi(t)|$ and $\int |\phi| < \infty$.

Th. (Riemann-Lebesgue Lemma). If $\int |\phi| < \infty$ and ϕ has continuous derivative ($\phi \in C^1$), then

$$\hat{\phi}(\lambda) \to 0 \qquad (|\lambda| \to \infty).$$

Proof. Choose $\epsilon > 0$, and then take T so large that $\int_T^{\infty} |\phi| < \epsilon$, $\int_{-\infty}^{-t} |\phi| < \epsilon$. Then also $|\int_T^{\infty} e^{i\lambda t} \phi(t) dt| < \epsilon$, $|\int_{-\infty}^T e^{i\lambda t} \phi(t) dt| < \epsilon$ (as $|\int ...| \leq \int |...|$). As ϕ' is continuous on [-T, T], it is bounded there, by M say. Write

$$\hat{\phi}_T(\lambda) := \int_{-T}^T e^{i\lambda t} \phi(t) dt.$$

Integrating by parts,

$$\hat{\phi}_T(\lambda) = \frac{1}{i\lambda} [e^{i\lambda t} \phi(t)]_{-T}^T - \frac{1}{i\lambda} \int_{-T}^T e^{i\lambda t} \phi'(t) dt.$$

So

$$|\phi_T(\lambda)| \le \frac{1}{|\lambda|} (|\phi(T)| + |\phi(-T)|) + \frac{2TM}{|\lambda|} \to 0 \qquad (|\lambda| \to \infty).$$

So $|\phi_T(\lambda)| < \epsilon$ for $|\lambda|$ large enough. Adding in $\int_{-\infty}^{-T}$ and \int_T^{∞} , $|\phi(\lambda)| \leq 3\epsilon$ for $|\lambda|$ large enough. //

Note. We use here the *Riemann integral*. This suffices for this course, and you know it. The result is also true for the *Lebesgue integral* (more general, and easier to handle, so better, but harder to set up) – which not all of you know. With Lebesgue integrals, we do not need to assume ϕ' exists (or is continuous).