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7. THE GAMMA FUNCTION

Recall (M2PM3 II.8, L22, 23) the Euler integral definition:

Γ(z) :=
∫ ∞

0
tz−1e−tdt.

The integral converges for Re z > 0, but from the functional equation
Γ(z + 1) = zΓ(z) we can extend Γ successively to Re z > −1, . . . , Re z >
−n, . . .. This gives the analytic continuation of Γ to the whole complex plane.
There, it has poles at 0, . . . ,−n, . . ., but no zeros (so 1/Γ is entire, with zeros
at 0,−1, . . . ,−n, . . .).

One has the alternative Weierstrass product definition:

1/Γ(z) = zeγz
∞∏
n=1

{
(
1 +

z

n

)
e−z/n}

(M2PM3 Website, link to ‘Last year’s course’, L32, at end). This is the
definition preferred in the standard work
[WW] E. T. Whittaker and G. N. Watson, Modern analysis, 4th ed., CUP,
1927/46, Ch. XII.

In WW, Ex. 1 p. 236:
Γ′(1) = −γ

(by logarithmic differentiation of the Weierstrass product definition above
and putting z = 1). Also on WW p.236 (last footnote):

γ =
∫ 1

0
(1− e−t)

dt

t
−

∫ ∞

1

e−t

t
dt

by integration by parts. This also follows from the Euler integral definition
by differentiation under the integral sign and putting z = 1. Combining:

γ = −Γ′(1) = −
∫ ∞

0
e−x log xdx

(HW, (22.8.2), p.351). We shall use this in II.7 (as do Hardy and Wright) in
the proof of Mertens’ Theorem.
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§8. EULER’S SUMMATION FORMULA
This relates to the close connection between sums and integrals. We give

only what is needed later (III.3: analytic continuation of ζ). This is a special
case of the Euler-Maclaurin sum(mation) formula (see e.g. WW §7.21).

Theorem (i). For m, n integers, f differentiable on [m,n],

n∑
m+1

f(r)−
∫ n

m
f =

∫ n

m
(t− [t])f ′(t)dt.

Proof. [.] = r − 1 on [r − 1, r). Integrating by parts,∫ r

r−1
(t− r + 1)f ′(t)dt = [(t− r + 1)f(t)]rr−1 −

∫ r

r−1
f = f(r)−

∫ r

r−1
f.

Sum over r = m+ 1 to n. //

Th. (ii). In Th. (i),

1

2
f(m) +

n−1∑
m+1

f(r) +
1

2
f(n)−

∫ n

m
f =

∫ n

m
(t− [t]− 1

2
)f ′(t)dt.

Proof. As above, or from (i). //

Th. (iii). If m is an integer, x real, f differentiable on [m,x],

∑
m<r≤x

f(r)−
∫ x

m
f = aintxm(t− [t])f ′(t)dt− (x− [x])f(x).

Proof. Let n := [x]. In (i), add∫ x

n
(t− n)f ′(t)dt = [(t− n)f(t)]xn −

∫ x

n
f = (x− n)f(x)−

∫ x

n
f.

Cor. If f is differentiable on [1,∞) and
∑∞

1 f(r),
∫∞
1 f(t)dt both converge,

∞∑
1

f(r)−
∫ ∞

1
f(t)dt = f(1)+

∫ ∞

1
(t−[t])f ′(t)dt =

1

2
f(1)+

∫ ∞

1
(t−[t]−1

2
)f ′(t)dt.

Proof. Take m = 1 and let n → ∞. //
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As in the Integral Test (I.4), if f ↓ the difference S(x)−I(x) of the sume-
and integral converges even if both diverge.

Th. If f(x) ↓ 0 as x → ∞, S(x) :=
∑

m<r≤x f(r), I(x) :=
∫ x
m f(t)dt, then

(i) S(x)− I(x) → L as x → ∞, where L := f(1) +
∫∞
1 (t− [t])f ′(t)dt;

(ii) 0 ≤ L ≤ f(1);
(iii) For x ≥ 1, S(x) = I(x) + L + q(x), |q(x)| ≤ f(x). For x = n integer,
0 ≤ q(x) ≤ f(x).

Proof. Take m = 1 in Th. (ii) above:

S(x)− I(x) = f(1) +
∫ x

1
(t− [t])f ′(t)dt− (x− [x])f(x).

As f ↓ 0,
∫∞
x f ′(t)dt = [f ]∞t = −f(x). As 0 ≤ t − [t] < 1,

∫∞
1 (t − [t])f ′(t)dt

converges, with value in [−f(1), 0]. So

S(x)− I(x) → L ∈ [0, f(1)].

And S(x)− I(x) = L−
∫∞
x (t− [t])f ′(t)dt− (x− [x])f(x) = L+ J(x)−F (x),

say, where as f ↓
0 ≤ J(x) ≤ −

∫ ∞

x
f ′ = f(x).

Also 0 ≤ F (x) ≤ f(x), so |J(x)− F (x)| ≤ f(x) (and F (n) = 0). //

Cor. (J Prop.1.4.11 p.25, A p.56).

n∑
1

1/r − log n → γ = 1−
∫ ∞

1

t− [t]

t2
dt (n → ∞),

0 < γ < 1,
∑

1≤r≤x

1/r = log x+ γ + q(x), |q(x)| ≤ 1/x.
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